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Abstract

Recently, Moosa and Scanlon introduced (iterative) Hasse-Schmidt systems D and, given such a Hasse-
Schmidt system, they defined (iterative) D-rings, generalizing rings with higher derivation as intro-
duced by Hasse and Schmidt in 1937. We show that there is a bijection between Hasse-Schmidt
systems D and cocommutative coalgebras D. For a given Hasse-Schmidt system D with associated
coalgebra D we show that D-rings are in bijection to algebras with a D-measuring on them. Under
these correspondences iterative Hasse-Schmidt systems D correspond to cocommutative bialgebras D
and iterative D-rings correspond to D-module algebras.
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1. Introduction

In commutative algebra and related areas, especially differential algebra and difference algebra,
rings are often equipped with extra structures such as derivations, higher derivations, endomorphisms
or automorphisms. Similarities are apparent between the theory of rings with derivations and rings with
endomorphisms, i.e. between differential rings and difference rings. There are at least two approaches
that unify these structures. The first is that of D-measurings, where D is a coalgebra, which probably
first appeared in the book [1] by Sweedler. Another approach was recently proposed by Moosa and
Scanlon in [2] and [3].

In this note we show that to each Hasse-Schmidt system D in the sense of Moosa and Scanlon there
is associated canonically a cocommutative coalgebra D. Then Hasse-Schmidt rings (D-rings) are in
bijection with algebras equipped with a D-measuring. If the Hasse-Schmidt system D is unital and
iterative, the associated coalgebra D carries a natural structure of a bialgebra. In this case there is a
1-1 correspondence between unital iterative D-rings and D-module algebras. Though we note that the
definition of Hasse-Schmidt systems due to Moosa and Scanlon differs slightly from ours. In contrast
to them, we do not require Hasse-Schmidt systems to be unital. This definition seems to be more
natural due to the fact that a Hasse-Schmidt system D in our sense gives rise to a coalgebra D. If it is
in addition unital, then D is equipped with a “unit map”. Similarly an iterative structure on D yields
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a “multiplication map” on D. If finally D is unital iterative, then these maps turn D into a bialgebra.
Therefore the unital condition on D corresponds to a part of the algebra structure of D and is not
strictly necessary. We note that a similar discrepancy pre-existed already in the definition of higher
derivations: While a condition on the 0th higher derivation is made in [4], no such condition is present
in [1].

The structure of this note is as follows: In section 2 we recall the definitions of measuring and
of module algebras, while in section 3 we recall the basic definitions of (unital, iterative) Hasse-
Schmidt systems D and given such a system, of (unital, iterative) D-rings. In section 4 we construct
a cocommutative coalgebra associated to every Hasse-Schmidt system. A construction inverse to this
one is given in section 5. Given a Hasse-Schmidt system D with associated coalgebra D, we establish
in section 6 a 1-1 correspondence between D-rings and algebras with D-measuring. In the special case
of a unital iterative Hasse-Schmidt system D with associated bialgebra D this correspondence restricts
to one between unital iterative D-rings and D-module algebras. In section 7 it is explained that this
correspondence gives rise to an isomorphism between the category of commutative D-rings and the
category of commutative k-algebras with D-measuring. In the case of iterative unital Hasse-Schmidt
systems D with associated bialgebra D this isomorphism restricts to an isomorphism between the
full subcategories of unital iterative commutative D-rings and commutative D-module algebras. In
section 8 we give some examples illustrating our results.

This article originates in section 2.3.9 of the author’s doctoral thesis [5].

Notation: We assume all rings and algebras to be unital and associative, but not necessarily to be
commutative. Homomorphisms of algebras are assumed to respect the units. We further assume that
all coalgebras are counital and coassociative, but not necessarily to be cocommutative. Homomorphisms
of coalgebras are assumed to respect the counits. When we abbreviate an algebra (A,m, η) by A, then
multiplication and unit will also be denoted by mA and ηA, respectively. Similarly, when we abbreviate
a coalgebra (D,∆, ε) by D, then comultiplication and counit will also be denoted by ∆D and εD,
respectively. If D is a coalgebra and d ∈ D, then we use the Σ-notation ∆D(d) =

∑
(d) d(1) ⊗ d(2) (cf.

[1, Section 1.2] or [6, 1.4.2]).
We denote the category of algebras over a commutative ring R by AlgR and the category of left

R-modules by RM.
If C is a category and A and B are objects in C, then we denote the class of morphisms from A to

B in C by C(A,B). We denote the opposite category of C by Cop.
The category of sets is denoted by Set. If A and B are sets and a ∈ A, then we denote by

eva : Set(A,B) → B the evaluation map, i.e. eva(f) = f(a) for all f ∈ Set(A,B). For elements
a, b ∈ A we denote by δa,b the Kronecker delta, i.e. δa,a = 1 and δa,b = 0 if a 6= b. We denote the
tensor algebra of a module M by T(M).

Let k be a commutative ring.

2. Module algebras

Given a k-coalgebra D, we recall the definition of D-measurings and of D-module algebras in the
case where D is a k-bialgebra.

We first recall that for k-modules A,B and D there is an isomorphism of left k-modules

kM(D ⊗k A,B)→ kM(A, kM(D,B)), Ψ 7→ (a 7→ (d 7→ Ψ(d⊗ a))). (2.1)
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Lemma 2.1. If (D,∆D, εD) is a k-coalgebra and (B,mB , ηB) is a k-algebra, then the k-module

kM(D,B) becomes a k-algebra with respect to the convolution product, defined by

f · g := mB ◦(f ⊗ g) ◦∆D

for f, g ∈ kM(D,B), and unit element given by the composition

D
εD−−→ k

ηB−−→ B.

Furthermore, D is cocommutative if and only if kM(D,B) is commutative for every commutative
k-algebra B.

Proof. See for example [7, 1.3].

Proposition 2.2. Let D be a k-coalgebra and let A and B be k-algebras. If Ψ is an element of

kM(D ⊗k A,B) and ρ ∈ kM(A, kM(D,B)) is the image of Ψ under the isomorphism (2.1), then the
following are equivalent:

(1) ρ is a homomorphism of k-algebras,

(2) for all d ∈ D and all a, b ∈ A

(a) Ψ(d⊗ ab) =
∑

(d) Ψ(d(1) ⊗ a)Ψ(d(2) ⊗ b)

(b) Ψ(d⊗ 1A) = εD(d)1B hold,

and

(3) the diagrams

D ⊗k A⊗k A
idD ⊗mA //

∆D⊗idA⊗ idA

��

D ⊗k A
Ψ // B

D ⊗k D ⊗k A⊗k A
idD ⊗τ⊗idA// D ⊗k A⊗k D ⊗k A

Ψ⊗Ψ
// B ⊗k B,

mB

OO

where τ : D ⊗k A→ A⊗k D is defined by τ(d⊗ a) = a⊗ d for all a ∈ A and d ∈ D, and

D ⊗k k
εD⊗ηB //

idD ⊗ηA

��

k ⊗k B

∼

��

D ⊗k A
Ψ // B

commute.

Proof. The equivalence between (2) and (3) is clear and the one between (1) and (2) can be seen
by expanding the definition of ρ and of the condition that ρ be a homomorphism of k-algebras as is
worked out in detail in [1, Proposition 7.0.1].
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Definition 2.3. Let D be a k-coalgebra and A and B be k-algebras. If Ψ ∈ kM(D ⊗k A,B), then we
say that Ψ measures A to B if the equivalent conditions in proposition 2.2 are satisfied.

If A1, A2, B1 and B2 are k-algebras, Ψ1 : D⊗kA1 → B1 measures A1 to B1 and Ψ2 : D⊗kA2 → B2

measures A2 to B2, then we say that homomorphisms ϕA : A1 → A2 and ϕB : B1 → B2 of k-algebras
are compatible with the D-measurings if the diagram

D ⊗k A1

idD ⊗ϕA

��

Ψ1 // B1

ϕB

��

D ⊗k A2
Ψ2 // B2

commutes.

The following lemmata are clear from the definitions.

Lemma 2.4. Let D be a k-coalgebra and A1, A2, B1 and B2 be k-algebras. If Ψ1 ∈ kM(D⊗k A1, B1)
measures A1 to B1 and Ψ2 ∈ kM(D ⊗k A2, B2) measures A2 to B2 and ρ1 and ρ2 are the associated
homomorphisms of k-algebras, then homomorphisms of k-algebras ϕA : A1 → A2 and ϕB : B1 → B2

are compatible with the D-measurings if and only if the diagram

A1
ρ1 //

ϕA

��

kM(D,B1)

kM(D,ϕB)

��

A2
ρ2 //

kM(D,B2)

commutes.

Lemma 2.5. Let D be a k-bialgebra and A be a k-algebra. If Ψ ∈ kM(D ⊗k A,A) and ρ : A →
kM(D,A) is the homomorphism associated to Ψ via (2.1), then Ψ makes A into a D-module if and
only if the diagrams

A
ρ

//

ρ

��

kM(D,A)

kM(D,ρ)

��

kM(D,A)
kM(mD,A)

//
kM(D ⊗k D,A) ∼= kM(D, kM(D,A))

and

A
ρ

//

idA

((

kM(D,A)

ev1D

��

A

commute.

Definition 2.6. Let A be a k-algebra, D be a k-bialgebra and let Ψ ∈ kM(D ⊗k A,A) measure A to
itself. We say that Ψ is a (left) D-module algebra structure on A if Ψ makes A into a D-module (cf.
lemma 2.5). The pair (A,Ψ) is then called (left) D-module algebra.
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A commutative D-module algebra is a D-module algebra (A,Ψ) such that the k-algebra A is com-
mutative.

A homomorphism of D-module algebras from (A1,Ψ1) to (A2,Ψ2) is a homomorphism of k-algebras
ϕ : A1 → A2 that fulfills the equivalent conditions of lemma 2.4 (with B1 = A1 and B2 = A2).

Notation: If Ψ: D⊗kA→ B is a homomorphism of k-modules, then we denote by ρ : A→ kM(D,B)
the homomorphism corresponding to Ψ under the isomorphism (2.1) and vice versa. If d ∈ D and
a ∈ A, then we denote Ψ(d⊗ a) also by d.a or d(a) if there is no danger of confusion.

3. Moosa and Scanlon’s D-rings

In this section we recall the definition of (unital, iterative) Hasse-Schmidt systems and, given such
a (unital, iterative) Hasse-Schmidt system D, of (unital, iterative) D-rings. These terms have been
introduced by Moosa and Scanlon in [2] and [3]. Our exposition differs slightly from the original
definition of Moosa and Scanlon in that we do not assume Hasse-Schmidt systems D and D-rings to
be unital in general.

Notation: We denote by S the standard ring scheme over k, i.e. the k-scheme S := Spec k[x] regarded
as a ring scheme by equipping for every commutative k-algebra A the set S(A) ∼= A with the given ring
structure of A.

Definition 3.1 ([2, Definition 3.1] and [3, Definition 2.1]). A finite free commutative S-algebra scheme
is an affine commutative S-algebra scheme E that is isomorphic to Sl as S-module scheme for some
l ∈ N.

Remark 3.2. We note that a choice of an isomorphism E → Sl is part of the definition of Moosa and
Scanlon. This isomorphism is used in [2, Remark 3.2] to show that for every k-algebra R there is a
canonical isomorphism E(R)

∼−→ R⊗k E(k). However, this isomorphism does in fact not depend on the
particular choice of an isomorphism E → Sl.

Definition 3.3 ([3, Definition 2.2]). A Hasse-Schmidt system over k is a projective system of finite
free commutative2 S-algebra schemes

D = (πm,n : Dm → Dn)m,n∈N,n≤m

such that the πm,n are surjective morphisms of S-algebra schemes. If in addition D0 = S holds, then
we say that D is a unital Hasse-Schmidt system.

Definition 3.4 ([3, Definition 2.4]). Let D be a Hasse-Schmidt system over k. Then a commutative
D-ring over k is a pair (R, (En)n∈N) consisting of a commutative k-algebra R and a family

(En : R→ Dn(R))n∈N

2It seems that Moosa and Scanlon assume implicitly that the algebra schemes occurring in the definition of Hasse-
Schmidt systems are commutative, so we make this assumption here as well.
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of k-algebra homomorphisms such that the diagram

Dm(R)
πm,n(R)

// Dn(R)

R

Em

cc

En

<<

commutes for all n,m ∈ N with m ≥ n. If in addition D is a unital Hasse-Schmidt system, then we
say that a commutative D-ring (R, (En)n∈N) is unital if E0 = id holds.

We recall that there is a finite free commutative S-algebra scheme D(m,n) defined by

D(m,n)(A) := Dm(Dn(A))

for all commutative k-algebras A (cf. [2, §4.2]).

Remark 3.5. There is a slight difference in terminology in comparison with the work of Moosa and
Scanlon. What is called a Hasse-Schmidt system (ring) in [3] is a unital Hasse-Schmidt system (ring)
in our notation.

Definition 3.6 ([3, Definition 2.17]). An iterative Hasse-Schmidt system is a Hasse-Schmidt system
D = (Dn)n∈N together with a family of closed immersions of S-algebra schemes3

∆ = (∆(m,n) : Dm+n → D(m,n))n,m∈N (3.1)

such that the diagrams

Dm+n

πm+n,m′+n′

��

∆(m,n)
// D(m,n)

π(m,n),(m′,n′)

��

Dm′+n′
∆(m′,n′)

// D(m′,n′),

(3.2)

where the morphism π(m,n),(m′,n′) is defined on A-points as the composition

D(m,n)(A) = Dm(Dn(A))
Dm(πn,n′ (A))
−−−−−−−−−→ Dm(Dn′(A))

πm,m′ (Dn′ (A))
−−−−−−−−−−→ Dm′(Dn′(A)) = D(m′,n′)(A),

and

Dn+m+l(A)

∆(n,m+l)(A)

��

∆(n+m,l)(A)
// Dn+m(Dl(A))

∆(n,m)(Dl(A))

��

Dn(Dm+l(A))
Dn(∆(m,l)(A))

// Dn(Dm(Dl(A)))

(3.3)

3Moosa and Scanlon only require ∆(m,n) to be morphisms of ring schemes. It seems however natural to assume that
they are morphisms of S-algebra schemes and we need this in the proof of proposition 4.1.
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commute for all commutative k-algebras A and all m,m′, n, n′, l ∈ N with m′ ≤ m and n′ ≤ n.
A unital iterative Hasse-Schmidt system is a unital Hasse-Schmidt system that is iterative with

respect to a family of morphisms (3.1) such that

∆(m,0) = ∆(0,m) = id (3.4)

holds for all m ∈ N.

Definition 3.7 ([3, Definition 2.17]). If (D,∆) is an iterative Hasse-Schmidt system, then a commu-
tative ∆-iterative D-ring is a commutative D-ring (R, (En)n∈N) such that the diagram

Dm+n(R)
∆(m,n)(R)

// Dm(Dn(R))

R

Em+n

dd

E(m,n)

99

commutes for all m,n ∈ N, where E(m,n) : R→ Dm(Dn(R)) is defined as the composition

R
Em−−→ Dm(R)

Dm(En)−−−−−→ Dm(Dn(R)).

A commutative unital ∆-iterative D-ring is a commutative unital D-ring (R, (En)n∈N) that is iterative.

4. The coalgebra D associated to a Hasse-Schmidt system D

In this section we will construct for every Hasse-Schmidt system D a coalgebra D. If D is unital
or iterative, then D will have additional structures.

Proposition 4.1. Let D = (Dn)n∈N be a Hasse-Schmidt system over k.

(1) Then
D := lim−→

n∈N
Dn(k)∗,

where we denote by Dn := Dn(k)∗ the dual kM(Dn(k), k) of the k-module Dn(k), becomes natu-
rally a cocommutative k-coalgebra. For every commutative k-algebra A there is an isomorphism
of k-algebras

kM(D,A)
∼−→ lim←−

n∈N
Dn(A). (4.1)

(2) If D is unital, then there is a canonically defined homomorphism of k-coalgebras

η : k → D. (4.2)

(3) If D is iterative with respect to

∆ = (∆(m,n) : Dm+n → D(m,n))m,n∈N, (4.3)

then the morphisms (4.3) induce a homomorphism of k-coalgebras

m: D ⊗k D → D

that defines an associative multiplication on D and fulfills

m(Dn ⊗Dm) = Dn+m.
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(4) If D is a unital iterative Hasse-Schmidt system, then D becomes a k-bialgebra with unit η and
multiplication m.

Proof. We denote the transition maps of D by πm,n : Dm → Dn for all m,n ∈ N with m ≥ n. The
structure of a commutative k-algebra on the finitely generated free k-module Dn(k) induces a structure
of a cocommutative k-coalgebra on the dual Dn(k)∗ for all n ∈ N and the homomorphisms of k-algebras
πm,n(k) : Dm(k)→ Dn(k) induce homomorphisms of k-coalgebras πm,n(k)∗ : Dn(k)∗ → Dm(k)∗ form-
ing a direct system in the category of k-coalgebras. The k-coalgebra structures on Dn(k)∗, n ∈ N
induce a k-coalgebra structure on D := lim−→n∈NDn(k)∗, which again is cocommutative. For every

commutative k-algebra A we have, recalling [2, Remark 3.2],

kM(D,A) = kM(lim−→
n∈N
Dn(k)∗, A)

∼= lim←−
n∈N

kM(Dn(k)∗, A)

∼= lim←−
n∈N
Dn(k)⊗k A

∼= lim←−
n∈N
Dn(A).

If D is unital, then the homomorphisms of k-algebras

πn,0(k) : Dn(k)→ D0(k) = k

give rise to homomorphisms of k-coalgebras k → Dn(k)∗ and thus to η : k → Dn(k)∗ → D (this
composition does not depend on n ∈ N). The compatibility of the comultiplication ∆ with η follows
from the compatibility of πn,0 with the multiplication of Dn(k) and D0(k). The compatibility of the
counit ε with η follows from the compatibility of πn,0(k) with the units of Dn(k) and D0(k).

We assume now that D is iterative with respect to (4.3). By [2, Remark 4.10], there is a canonical
isomorphism of k-algebras

D(m,n)(k)
∼−→ Dm(k)⊗k Dn(k). (4.4)

The homomorphisms of k-algebras

Dm+n(k)
∆(m,n)(k)

// D(m,n)(k)
∼ // Dm(k)⊗k Dn(k)

induce homomorphisms of k-coalgebras

Dm(k)∗ ⊗k Dn(k)∗
∼ // D(m,n)(k)∗

∆(m,n)(k)∗
// Dm+n(k)∗

for all m,n ∈ N. These give rise to a homomorphism of k-coalgebras

m: D ⊗k D → D,

which makes the diagram

D ⊗k D
m // D

Dm(k)∗ ⊗k Dn(k)∗

OO

∆(m,n)(k)∗
// Dm+n(k)∗

OO
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commutative for all m,n ∈ N. The property m(Dn ⊗Dm) = Dn+m follows from the fact that ∆(m,n)

is a closed immersion.
From the property (3.3) in the definition of iterative Hasse-Schmidt systems we see, using implicitly

the isomorphisms (4.4), that the diagram

Dn(k)⊗k Dm(k)⊗k Dl(k) Dn+m(k)⊗k Dl(k)
∆n,m(k)⊗kDl(k)
oo

Dn(k)⊗k Dm+l(k)

Dn(k)⊗k∆m,l(k)

OO

Dn+m+l(k)
∆n,m+l(k)

oo

∆n+m,l(k)

OO

commutes for all n,m, l ∈ N and thus dually the inner rectangle of

D ⊗k D ⊗k D
m⊗D

//

D⊗m

��

D ⊗k D

m

��

Dn(k)∗ ⊗k Dm(k)∗ ⊗k Dl(k)∗

Dn(k)∗⊗∆m,l(k)∗

��

ii

∆n,m(k)∗⊗Dl(k)∗
// Dn+m(k)∗ ⊗k Dl(k)∗

77

∆n+m,l(k)∗

��

Dn(k)∗ ⊗k Dm+l(k)∗

uu

∆n,m+l(k)∗
// Dn+m+l(k)∗

''
D ⊗k D

m // D

commutes too. Using the universal property of the direct limit

D ⊗k D ⊗k D ∼= lim−→
n,m,l∈N

Dn(k)∗ ⊗k Dm(k)∗ ⊗k Dl(k)∗

we conclude that the outer rectangle also commutes, i.e. that m is associative. The compatibility
of the comultiplication ∆ with m follows from the compatibility of ∆(m,n) with the multiplication of
Dm+n and D(m,n). The compatibility of the counit ε with m follows from the compatibility of ∆(m,n)

with the units of Dm+n and D(m,n).
Finally, we assume that D is a unital iterative Hasse-Schmidt system. By the properties (3.2) and

(3.4) the diagram

k ⊗k Dm(k) D(0,m)(k)
∼oo Dm(k)

∆(0,m)(k)=id
oo

Dn(k)⊗k Dm(k)

πn,0(k)⊗kπm,m(k)

OO

D(n,m)(k)

π(n,m),(0,m)(k)

OO

∼oo Dn+m(k).
∆(n,m)(k)
oo

πn+m,m(k)

OO
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commutes for all n,m ∈ N. Therefore, dually the inner rectangles of

k ⊗k D
∼ //

η⊗id

��

D

id

��

k ⊗k Dm(k)∗

ff

πn,0(k)∗⊗kπm,m(k)∗

��

∼ // D(0,m)(k)∗

π(n,m),(0,m)(k)∗

��

∆(0,m)(k)∗=id
// Dm(k)∗

>>

πn+m,m(k)∗

��

Dn(k)∗ ⊗k Dm(k)∗

xx

∼ // D(n,m)(k)∗
∆(n,m)(k)∗

// Dn+m(k)∗

!!

D ⊗k D
m // D

commute and, again by the universal property of the direct limit, the outer rectangle commutes too.
This means that η is a left unit for the multiplication m. Similarly, one can show that η is a right
unit.

5. The Hasse-Schmidt system D associated to a cocommutative coalgebra D

In this section we conversely associate a Hasse-Schmidt system D to a cocommutative k-coalgebra
D. If D is moreover a k-bialgebra, then D will become a unital iterative Hasse-Schmidt system.

Proposition 5.1. Let D be a cocommutative k-coalgebra that is the direct limit of finite free k-
subcoalgebras (Dn)n∈N with Dn ⊆ Dn+1 for all n ∈ N.

(1) Then a Hasse-Schmidt system D = (Dn)n∈N is defined by finite free commutative S-algebra
schemes Dn that are defined by

Dn(A) := kM(Dn, A)

for all commutative k-algebras A.

(2) If additionally D0 = k, then D is unital.

(3) If there is an associative composition law on D given by a homomorphism m: D ⊗k D → D
of k-coalgebras and if m(Dn ⊗k Dm) = Dn+m, then D is iterative with respect to the family of
morphisms

∆ = (∆(n,m) : Dn+m → D(n,m))n,m∈N

that are defined as the compositions

Dn+m(A) = kM(Dn+m, A)
kM(m,A)−−−−−−→ kM(Dn⊗kDm, A)

∼−→ kM(Dn, kM(Dm, A)) =Dn(Dm(A))

for all commutative k-algebras A.

(4) If D is a k-bialgebra with respect to the unit η : k
id−→ D0 ⊆ D and multiplication m, then D is a

unital iterative Hasse-Schmidt system.
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Proof. The functors Dn are finite free commutative S-algebra schemes, since the Dn are cocommutative
k-coalgebras that are finitely generated free as k-modules and since

Dn(A) = kM(Dn, A) ∼= Algk(T(Dn), A).

Since Dn ⊆ Dm for all n ≤ m, we obtain compatible surjections

πm,n(A) : Dm(A)→ Dn(A).

Therefore D := (Dn)n∈N is a Hasse-Schmidt system over k.
If D0 = k, then we obtain D0 = S.
If m: D⊗k D → D is a homomorphism of k-coalgebras defining an associative composition law on

D such that m(Dn ⊗k Dm) = Dn+m, then morphisms

∆ = (∆(n,m) : Dn+m → D(n,m))n,m∈N

are defined on A-points by the homomorphisms of A-algebras

∆(n,m)(A) : Dn+m(A) = kM(Dn+m, A)→ kM(Dn ⊗k Dm, A) = kM(Dn, kM(Dm, A)) = Dn(Dm(A))

that are induced by the restriction of the multiplication m: Dn ⊗k Dm → Dn+m. We notice that

Dn+m(A) = kM(Dn+m, A) ∼= Algk(T(Dn+m), A)

and

D(n,m)(A) = Dn(Dm(A)) = kM(Dn, kM(Dm, A)) = kM(Dn ⊗k Dm, A) ∼= Algk(T(Dn ⊗k Dm), A)

Therefore the morphisms ∆(n,m) are induced by the homomorphisms

T(m): T(Dn ⊗k Dm)→ T(Dn+m)

on the coordinate rings, which are surjective, since m: Dn ⊗k Dm → Dn+m is surjective. Therefore
the morphisms ∆(n,m) are closed immersions. The conditions (3.2) and (3.3) are fulfilled since the
multiplication is compatible with the restriction and since it is associative.

If finally D is a k-bialgebra with D0 = η(k), then m restricts to the canonical isomorphisms
Dm ⊗k D0

∼−→ Dm ⊗k k
∼−→ Dm and D0 ⊗k Dm

∼−→ k⊗k Dm
∼−→ Dm, since η is a left and right unit for

m, and therefore (3.4) holds.

Remark 5.2. The procedures in propositions 4.1 and 5.1 are inverse to each other.

6. D-rings and D-measurings

Remark 6.1. Let D = (Dn)n∈N be a Hasse-Schmidt system over k. Then due to the universal property
of the inverse limit there is a bijection between the set of commutative D-rings and the set of pairs
(R,E) where R is a commutative k-algebra and E : R→ lim←−n∈NDn(R) is a k-algebra homomorphism.

If the Hasse-Schmidt system D is unital, then the homomorphism E : R → lim←−n∈NDn(R) renders the
composition

R
E→ lim←−

n∈N
Dn(R)→ D0(R) = R

into the identity if and only if the corresponding commutative D-ring is unital. By abuse of notation
we denote a commutative D-ring (R, (En)n∈N) also by (R,E).
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Proposition 6.2. Let D be a Hasse-Schmidt system over k and D = lim−→n∈NDn(k)∗ the associated

k-coalgebra (see proposition 4.1).

(1) If (R,E) is a commutative D-ring over k, then to E there is associated canonically a D-measuring
ρ : R→ kM(D,R) from R to itself and the diagram

lim←−n∈NDn(R)

R

E
66

ρ ((

kM(D,R)

OO

commutes, where the vertical arrow is the isomorphism (4.1).

If D is unital and (R,E) is a unital commutative D-ring, then the composition

R
ρ−→ kM(D,R)

ev1D−−−→ R (6.1)

is the identity on R, where 1D denotes the image of 1 ∈ k under the homomorphism η (cf. (4.2)).

If D is an iterative Hasse-Schmidt system and (R,E) is an iterative commutative D-ring, then
the D-measuring ρ : R→ kM(D,R) renders the diagram

R
ρ

//

ρ

��

kM(D,R)

kM(D,ρ)

��

kM(D,R)
kM(m,R)

//
kM(D ⊗k D,R) ∼= kM(D, kM(D,R))

(6.2)

commutative, where m is the homomorphism constructed in proposition 4.1 (3).

If finally D is a unital iterative Hasse-Schmidt system and (R,E) a commutative unital itera-
tive D-ring, then ρ is a D-module algebra structure, where D is the k-bialgebra constructed in
proposition 4.1 (4).

(2) Conversely, to every D-measuring ρ : R → kM(D,R) from a commutative k-algebra R to itself
there is canonically associated a D-ring (R,E).

If D0 = k and η : k → D is the inclusion of D0 = k into D and the composition (6.1) is the
identity, where 1D := η(1), then the D-ring (R,E) is unital.

If there is a homomorphism of k-coalgebras m: D ⊗k D → D that defines an associative com-
position law on D and if ρ makes the diagram (6.2) commutative, then the D-ring (R,E) is
iterative.

If D is a k-bialgebra and ρ is a D-module algebra structure on R, then the D-ring (R,E) is unital
iterative.

The constructions in (1) and (2) are inverse to each other.
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Proof. Given a commutative D-ring (R,E), we define a D-measuring ρ : R → kM(D,R) from R to
itself as the composition of the homomorphisms of k-algebras

R
E−→ lim←−

n∈N
Dn(R)

(4.1)−−−→ kM(D,R).

If D is a unital Hasse-Schmidt system and (R,E) is a unital commutative D-ring, then by the
definition of the unit of D, for every m ∈ N the diagram

R

ρ

**

E0=id

��

Em

$$

E // lim←−n∈NDn(R)

��

∼ //
kM(D,R)

��

kM(η,R)

��

Dm(R)
∼ //

πm,0(R)

��

kM(Dm(k)∗, R)

kM(πm,0(k)∗,R)

��

R
id // R

commutes.
If (D,∆) is an iterative Hasse-Schmidt system and (R,E) is a commutative ∆-iterative D-ring,

then by the definition of m on D (cf. proposition 4.1(3)) the diagram

R

id

$$

ρ

,,

ρ

��

E //

E

��

lim←−
l∈N
Dl(R)

ww

lim←−
l∈N

Dl(E)

��

∼ //
kM(D,R)

kM(D,E)

��
kM(D,ρ)

��

R

En+m

��

En // Dn(R)

Dn(Em)

��

Dn+m(R)
∆(n,m)(R)

// D(n,m)(R)

lim←−
k∈N
Dk(R)

;;

∼

��

// lim←−
k,l∈N
D(l,k)(R)

gg

∼

��

∼ //
kM(D, lim←−

k∈N
Dk(R))

∼

��

lim←−
k,l∈N
Dl(R)⊗R Dk(R)

∼

��

kM(D,R)
kM(m,R)

//
kM(D ⊗k D,R)

∼ //
kM(D, kM(D,R))

13



commutes for all m,n ∈ N.
If (D,∆) is a unital iterative Hasse-Schmidt system and (R,E) is a commutative unital ∆-iterative

D-ring, then from the commutativity of the two previous diagrams we conclude that ρ : R→ kM(D,R)
is a D-module algebra structure on R.

If, conversely, ρ : R→ kM(D,R) is a D-measuring from R to itself, then for every m ∈ N we define
a homomorphism of k-algebras Em : R→ Dm(R) as the composition

R
ρ−→ kM(D,R)

∼−→ lim←−
n∈N
Dn(R)→ Dm(R).

Then by definition the maps (En)n∈N fulfill the relations En = πm,n(R) ◦ Em for all m ≥ n. Conse-
quently, the family (En)n∈N defines a D-ring structure on R.

If additionally D0 = k and 1D := η(1) renders (6.1) into the identity, then D0(R) = R and E0 is
the identity, i.e. (R,E) is a unital commutative D-ring.

If there is a homomorphism of k-coalgebras m: D⊗kD → D that defines an associative composition
law on D and ρ makes the diagram (6.2) commutative, then the inner rectangle of the diagram

R
Em //

Em+n

��

Dm(R)

Dm(En)

��

R

id

ee

ρ

��

ρ
//
kM(D,R)

kM(D,ρ)

��

77

kM(D,R)

yy

kM(m,R)
//
kM(D, kM(D,R))

''

Dm+n(R)
∆(m,n)(R)

// D(m,n)(R)

commutes, and thus also the outer for all m,n ∈ N. This means that (R,E) is a commutative ∆-
iterative D-ring.

If moreover D is a k-bialgebra and ρ is a D-module algebra structure on R, by the previous (R,E)
is a commutative unital ∆-iterative D-ring.

Using the identification described in remark 6.1, we see that the passage between the (unital, iter-
ative) D-ring structure E on R and (unital, associative) D-measurings ρ on R is given by composition
with the isomorphism lim←−n∈NDn(R)

∼−→ kM(D,R) and its inverse. Therefore, the constructions in (1)

and (2) are inverse to each other.

7. Isomorphism of categories

In [3] the authors do not define morphisms between commutative D-rings over k. Though, if
D = (Dn)n∈N is a Hasse-Schmidt system over k and if (R, (En)n∈N) and (S, (Fn)n∈N) are commutative
D-rings, then a morphism from (R, (En)n∈N) to (S, (Fn)n∈N) can be defined as a homomorphism
of k-algebras ϕ : R → S such that Dn(ϕ) ◦ En = Fn ◦ ϕ holds for all n ∈ N. Then a homo-
morphism of k-algebras ϕ : R → S is a morphism of D-rings if and only if the induced morphism
lim←−n∈NDn(ϕ) : lim←−n∈NDn(R)→ lim←−n∈NDn(S) fulfills F ◦ ϕ = lim←−n∈NDn(ϕ) ◦ E.
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If D is the k-coalgebra associated to D by proposition 4.1, then the diagram

lim←−n∈NDn(R)

lim←−n∈N
Dn(ϕ)

��

∼ //
kM(D,R)

kM(D,ϕ)

��

lim←−n∈NDn(S)
∼ //

kM(D,S),

commutes, where the horizontal arrows are the isomorphisms from proposition 4.1. So we see that
there is a bijection between the homomorphisms of D-rings from (R, (En)n∈N) to (S, (Fn)n∈N) and
the homomorphisms of k-algebras with D-measuring from R to S, where both algebras are equipped
with the D-measuring induced by their D-ring structures. Together with proposition 6.2 we see that
the category of commutative D-rings and the category of commutative algebras with D-measuring are
isomorphic. If (D,∆) is a unital iterative Hasse-Schmidt system and D is the associated k-bialgebra,
then this isomorphism induces an isomorphism between the category of commutative unital ∆-iterative
D-rings and the category of commutative D-module algebras.

8. Examples

In this section we illustrate our results in the cases of Hasse-Schmidt derivations and endomor-
phisms.

Example 8.1 (Hasse-Schmidt derivations). Hasse-Schmidt derivations are described as follows: Let
D := k〈θ(l) | l ∈ N〉 be the free k-module with basis (θ(l))l∈N. It becomes a k-algebra with multiplication
defined by θ(m)θ(l) :=

(
m+l
k

)
θ(m+l) and unit 1 := θ(0) and a cocommutative k-coalgebra via

∆(θ(l)) :=
∑

l1+l2=l

θ(l1) ⊗ θ(l2) and ε(θ(l)) := δl,0.

A family of finite free k-subcoalgebras is defined by Dn := k〈θ(0), . . . , θ(n)〉 for all n ∈ N. We note that

kM(Dn, A) ∼= AJtK/(tn+1) and kM(D,A) ∼= AJtK for every commutative k-algebra A. The associated
Hasse-Schmidt system D = (Dn)n∈N is given by the finite free S-algebra schemes Dn defined by

Dn(A) = kM(Dn, A) = Algk(T(Dn), A) ∼= AJtK/(tn+1)

for commutative k-algebras A. We note that T(Dn) ∼= k[θ(0), . . . , θ(n)]. The Hasse-Schmidt system D
is unital and iterative with respect to the family ∆ = (∆(n,m))n,m∈N of morphisms

∆(n,m) : Dn+m → D(n,m)

defined by

Dn+m(A) = AJtK/(tn+m+1)→ (AJuK/(um + 1))JvK/(vn+1) = Dn(Dm(A)), t 7→ u+ v.

The corresponding homomorphism on the coordinate rings is given as

T(Dn)⊗ T(Dm)→ T(Dn+m), θ(l1) ⊗ θ(l2) 7→
(
l1 + l2
l1

)
θ(l1+l2)
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for all l1 ∈ {0, . . . , n} and l2 ∈ {0, . . . ,m}.
In this situation commutative D-rings are commutative k-algebras R equipped with a family of

k-linear homomorphisms θ(l) : R→ R such that

θ(l)(1) = δl,0 and θ(l)(ab) =
∑

l1+l2=l

θ(l1)(a)θ(l2)(b)

for all a, b ∈ R, i.e. commutative k-algebras equipped with a higher derivation. By proposition 6.2 they
can be equivalently described as commutative k-algebras together with a D-measuring on them or by a
homomorphism of commutative k-algebras

θ : R→ RJtK.

A commutative D-ring is unital if and only if the composition

R
θ−→ RJtK t7→0−−−→ R (8.1)

of the associated homomorphism θ : R → RJtK with the homomorphism of R-algebras RJtK → R, that
maps t to 0, is the identity on R.

A commutative D-rings is ∆-iterative if and only if the associated homomorphisms θ : R → RJtK
makes the following diagram commutative

R
θ

//

θ

��

RJuK

θJuK

��

RJtK
t 7→u+v

// RJu, vK.

(8.2)

Consequently, commutative unital ∆-iterative D-rings are in 1-1 correspondence with commutative k-
algebras equipped with an iterative derivation, i.e. a homomorphism θ : R → RJtK that renders the
composition (8.1) into the identity and makes the diagram (8.2) commutative.

Remark 8.2. A higher derivation as defined by Sweedler in [1] corresponds to a D-measuring on a
commutative ring (or a commutative D-ring) as in the previous example. The definition of higher
derivations by Matsumura in [4] corresponds to unital D-rings in the last example.

Example 8.3 (Endomorphisms). Endomorphisms on rings can be described as follows: Let

D := k〈σi | i ∈ N〉

be the free k-module generated by (σi)i∈N with k-algebra structure defined by σiσj := σi+j and 1 := σ0

and cocommutative k-coalgebra structure defined by ∆(σi) = σi⊗ σi and ε(σi) = 1 for all i, j ∈ N. We
define k-subcoalgebras Dn of D as the free k-modules generated by σ0, σ1, . . . , σn. The corresponding
Hasse-Schmidt system D = (Dn)n∈N is given by

Dn(A) = kM(Dn, A) ∼= An+1

for all commutative k-algebras A, where An+1 is a k-algebra with pointwise addition and multiplication.
The homomorphism πm,n(A) : Dm(A)→ Dn(A) is given by the projection to the first n+ 1 factors.
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The Hasse-Schmidt system D becomes iterative with respect to the morphisms

∆(n,m) : Dn+m(A)→ Dn(Dm(A))

that are induced by the homomorphisms of k-algebras

T(Dn)⊗ T(Dm)→ T(Dn+m), σi ⊗ σj 7→ σi+j ,

which are surjective (and therefore ∆(n,m) are closed immersions).
Commutative k-algebras R with D-measuring are in 1-1 correspondence with commutative k-algebras

R that are equipped with a family of endomorphisms (σi)i∈N of R. The corresponding commutative
D-ring (R,E) is given by a family of homomorphisms

En : R→ Rn+1

of k-algebras, defined by En(r) = (σi(r))i=0,...,n or equivalently by

E : R→ RN, r 7→ (σi(r))i∈N.

Using this notation, commutative D-module algebras (or equivalently: commutative unital ∆-iterative
D-rings) are in 1-1 correspondence with commutative k-algebras equipped with an endomorphism σ of
k-algebras, such that σi = σi for all i ∈ N.

Other interesting structures on rings that can be described using D-measurings (resp. D-module
algebras), where D is a cocommutative coalgebra (resp. bialgebra) include derivations, but also a
modified version of the iterated q-difference operators introduced by Hardouin (cf. [8]) as explained
by Masuoka (cf. [9]).

Remark 8.4. It seems that while by using higher or iterative derivations certain problems in differen-
tial algebra in positive characteristic can be overcome, possibly similar problems in difference algebra
can be resolved by the consideration of systems of endomorphisms or of higher powers of an endomor-
phisms. Indications for this appeared also in [10] and [11]. In the view of this note, in both cases this
is achieved by considering certain “iterative” structures.
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d’Àlgebra i Geometria, available from: http://hdl.handle.net/10803/674 (2010).

[6] S. Montgomery, Hopf algebras and their actions on rings, Vol. 82 of CBMS Regional Conference
Series in Mathematics, American Mathematical Society, Providence, RI, 1993.

[7] T. Brzezinski, R. Wisbauer, Corings and comodules, Vol. 309 of London Mathematical Society
Lecture Note Series, Cambridge University Press, Cambridge, 2003.

[8] C. Hardouin, Iterative q-difference Galois theory, J. Reine Angew. Math. 644 (2010) 101–144.
doi:10.1515/CRELLE.2010.053.
URL http://dx.doi.org/10.1515/CRELLE.2010.053

[9] A. Masuoka, The ×r-bialgebra associated with an iterative q-difference ring, preprint (2010).

[10] Z. Chatzidakis, E. Hrushovski, Y. Peterzil, Model theory of difference fields. II. Periodic ideals
and the trichotomy in all characteristics, Proc. London Math. Soc. (3) 85 (2) (2002) 257–311.
doi:10.1112/S0024611502013576.
URL http://dx.doi.org/10.1112/S0024611502013576

[11] M. Wibmer, A Chevalley theorem for difference equations, Math. Ann. 354 (4) (2012) 1369–1396.
doi:10.1007/s00208-011-0770-0.
URL http://dx.doi.org/10.1007/s00208-011-0770-0

18

http://dx.doi.org/10.1112/plms/pdq055
http://dx.doi.org/10.1112/plms/pdq055
http://dx.doi.org/10.1112/plms/pdq055
http://hdl.handle.net/10803/674
http://dx.doi.org/10.1515/CRELLE.2010.053
http://dx.doi.org/10.1515/CRELLE.2010.053
http://dx.doi.org/10.1515/CRELLE.2010.053
http://dx.doi.org/10.1112/S0024611502013576
http://dx.doi.org/10.1112/S0024611502013576
http://dx.doi.org/10.1112/S0024611502013576
http://dx.doi.org/10.1112/S0024611502013576
http://dx.doi.org/10.1007/s00208-011-0770-0
http://dx.doi.org/10.1007/s00208-011-0770-0
http://dx.doi.org/10.1007/s00208-011-0770-0

	Introduction
	Module algebras
	Moosa and Scanlon's D-rings
	The coalgebra D associated to a Hasse-Schmidt system D
	The Hasse-Schmidt system D associated to a cocommutative coalgebra D
	D-rings and D-measurings
	Isomorphism of categories
	Examples

