
INTRODUCTION TO GALOIS THEORY OF ARTINIAN

SIMPLE MODULE ALGEBRAS

by

Florian Heiderich

Abstract. — We give an introduction to a Galois theory of Artinian simple module
algebras. To this end, we first recall the Picard-Vessiot theories of differential and

difference equations, Umemura’s differential Galois theory and Morikawa-Umemura’s
difference Galois theory. Then we sketch the main ideas of Amano and Masuoka’s

unification of the Picard-Vessiot theories of differential and difference extensions. We

show how the differential Galois theory of Umemura and the difference Galois theory
of Morikawa-Umemura can be unified using Artinian simple module algebras in lieu

of differential or difference fields, respectively, and remove the restriction to fields of

characteristic 0. Finally, we compare this unified theory to the Picard-Vessiot theory
of Amano and Masuoka in the case of Picard-Vessiot extensions of Artinian simple

module algebras.

Résumé (Introduction au théorie de Galois des algèbres de modules arti-

niennes simples)

Nous donnons une introduction à une théorie de Galois des algèbres de mo-

dules artiniennes simples. À cet effet, nous rappelons tout d’abord les théories

de Picard-Vessiot des équations différentielles ou aux différences, ainsi que la
théorie de Galois différentielle d’Umemura et la théorie de Galois aux différences de

Morikawa-Umemura. Nous esquissons ensuite les idées principales de l’unification,

due à Amano et Masuoka, des théories de Picard-Vessiot des équations différentielles
ou aux différences. Nous montrons alors comment la théorie de Galois différentielle

d’Umemura et la théorie de Galois aux différences de Morikawa-Umemura peuvent

être unifiées en utilisant les algèbres de modules artiniennes simples à la place,
respectivement, des corps différentiels ou aux différences ; de plus, nous supprimons

la restriction aux corps de caractéristique nulle. Nous comparons enfin cette théorie

unifiée à la théorie de Picard-Vessiot d’Amano et Masuoka, dans le cas des extensions
de Picard-Vessiot d’algèbres de modules artiniennes simples.
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Introduction

It was already an aim of Lie to develop a theory analogous to Galois Theory, but

for differential equations instead of polynomial equations in one variable. About 100

years ago this goal was achieved for linear differential equations and in honor of its

inventors this theory is called Picard-Vessiot theory today. In the middle of the last

century Ritt and Kolchin supplied the foundation of this theory: differential algebra.

A modern approach to Picard-Vessiot theory of differential equations is provided in

[vdPS03]. Hasse and Schmidt introduced iterative derivations as a replacement for

derivations when working with fields of arbitrary characteristic (cf. [HS37]) and using

them Okugawa as well as Matzat and van der Put developed a Galois theory of linear

differential equations in positive characteristic (cf. [Oku87], [MvdP03]).

With a delay in time a similar theory was developed for linear difference equations,

which is nowadays called Picard-Vessiot theory of difference equations (cf. [vdPS97]).

Takeuchi gave a presentation of Picard-Vessiot theory that unifies derivations (for

rings including Q) and iterative derivations using so called C-ferential fields, where C

is a coalgebra (cf. [Tak89]). Inspired by this work, Amano and Masuoka pursued the

unification process and developed a theory that not only captures differential fields in

characteristic zero and iterative differential fields in arbitrary characteristic, but also

inversive difference fields (and more generally direct products of fields together with

an automorphism), cf. [AM05]. Instead of C-ferential fields, they use D-module

algebras, where D is a certain Hopf algebra. Depending on the choice of D one

obtains algebras with extra structures, among them derivations, iterative derivations

and automorphisms.

Umemura developed a Galois theory for algebraic differential equations (cf.

[Ume96]) and together with Morikawa he realized an analogous theory for difference

equations and applied it to study discrete dynamical systems on algebraic varieties

(cf. [Mor09], [MU09]).

The aim of this survey article is to provide a summary of the above mentioned

theories, to show how the theories of Umemura and Morikawa-Umemura can be unified

in a similar way as it was done by Amano, Masuoka and Takeuchi in the linear case

and how one can overcome the restriction to characteristic zero in the theories of

Umemura and Morikawa-Umemura.

In the first part, we recall the Picard-Vessiot theories of differential and difference

equations and the theories of Umemura and Morikawa-Umemura for non-linear differ-

ential and difference equations, respectively. The second part begins with section 3,

where we recall the definition and some results concerning D-module algebras. Sec-

tion 4 recalls briefly the Picard-Vessiot theory of Amano and Masuoka. In section 5

we show how the theories of Umemura and Morikawa-Umemura can be unified. This

unification is described in detail in [Hei10]. Additionally, we show that the restriction

to extensions of difference fields in the theory of Morikawa-Umemura is not necessary.
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Instead, we show how to develop the theory for a certain class of extensions of Ar-

tinian simple D-module algebras, where D is a certain bialgebra (cf. also [Hei]).

By using iterative derivations instead of derivations we also eliminate the restriction

to characteristic 0 from the theories of Umemura and Morikawa-Umemura. In the

last section we show how this unified theory is related to the Picard-Vessiot theory

of Amano and Masuoka by comparing the Umemura functor that we define and the

Galois group scheme defined by Amano and Masuoka for Picard-Vessiot extensions.

In [MU09] the authors rise the question about the possibility to generalize their

results to fields of arbitrary characteristic. We hope that the theory presented here

could serve as a framework to tackle these questions.

The proofs for results of sections 5 and 6 that are not provided here can be found

in [Hei10] and [Hei].

Notation. — We assume all rings and algebras to be unital and associative, but not

necessarily to be commutative. Homomorphisms of algebras are assumed to preserve

the units. We further assume that all coalgebras are counital and coassociative, but

not necessarily to be cocommutative. Homomorphisms of coalgebras are assumed to

preserve the counits.

If R is a commutative ring, then we denote by Q(R) the total quotient ring of R,

by Ω(R) the set of minimal prime ideals of R, by N(R) the nilradical of R, i.e. the

ideal consisting of all elements a ∈ R such that there exists a natural number n > 0

with an = 0, and πR : R → R/N(R) denotes the canonical projection. We denote

the category of (left) R-modules by RM, and by CAlgR the category of commutative

algebras over R; furthermore we denote by Grp the category of groups.

If f : R → S is a homomorphism of commutative rings and w = (w1, . . . , wn) are

algebraically independed elements over S, then fJwK : RJwK → SJwK denotes the

homomorphism defined by fJwK(
∑

k∈Nn akw
k) =

∑
k∈Nn f(ak)wk.

If C is a category and A and B are objects in C, then we denote the class of

morphisms from A to B in C by C(A,B).

The category of sets is denoted by Set. If A and B are sets and a ∈ A, then

we denote by eva : Set(A,B) → B the evaluation map, i.e. eva(f) = f(a) for all

f ∈ Set(A,B). We denote by Mn(A) the set of n× n-matrices with coefficients in A

and for elements a, b ∈ A we denote by δa,b the Kronecker delta, i.e. δa,a = 1 and

δa,b = 0 if a 6= b.
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PART I

DIFFERENTIAL- AND DIFFERENCE GALOIS THEORIES

1. Differential Galois theory

1.1. Galois theory of linear differential equations. — A contemporary expo-

sition of the Galois theory of linear differential equations in characteristic 0 can be

found in [vdPS03]. The basic object (replacing the field in Galois theory of polyno-

mial equations) is a differential field, i.e. a field together with a derivation on it. Let

(K, ∂K) is a differential field containing Q and A ∈Mn(K) a matrix with coefficients

in K. We consider the system of linear differential equations

(1.1) ∂(y) = Ay.

If (L, ∂L) is a differential extension field of (K, ∂K), then the solution space {y ∈
Ln | ∂L(y) = Ay} of (1.1) is a vector space of dimension at most n over the field of

constants

L∂L := {a ∈ L | ∂L(a) = 0}.
There is a construction analogous to the splitting field of a polynomial:

Proposition 1.1. — If the field of constants of (K, ∂K) is algebraically closed and

A ∈Mn(A), then there is a differential extension field (L, ∂L) over (K, ∂K) such that

(1) the constant field of L is equal to the constant field of K,

(2) there exists a matrix Y ∈ GLn(L) such that ∂L(Y ) = AY and

(3) L is generated as a field over K by the coefficients of Y .

The differential field L with this properties is unique up to differential isomorphism.

This differential extension field (L, ∂L) of (K, ∂K) is called a Picard-Vessiot field for

the equation (1.1) over K and the extension L|K is called a Picard-Vessiot extension.

Proposition 1.2. — For every Picard-Vessiot extension L|K of differential fields,

there exists an intermediate differential ring (R, ∂R) with the following properties:

(1) (R, ∂R) is a simple differential ring, i.e. it has no non-trivial differential ideals,

(2) there exists a fundamental solution matrix Y ∈ GLn(R) such that ∂R(Y ) = AY

and

(3) the K-algebra R is generated by the coefficients of Y and Y −1.

The differential ring R is called the Picard-Vessiot ring of the equation (1.1). The

differential Galois group of the extension L|K is defined as the group functor Gal(L|K)

on the category of commutative K∂K -algebras such that for every commutative K∂K -

algebra A its A-points are given as the group of differential automorphisms of R⊗K∂K

A that leave K ⊗K∂K A fixed, where the derivation ∂R is extended trivially to the
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right factor of the tensor product R ⊗K∂K A. It is an affine group scheme over K∂K

with coordinate ring (R⊗K R)∂ , where ∂ is the derivation induced by the derivation

∂R on the factors to the tensor product.

In [vdPS03, Appendix D] an analogue of this theory for linear partial differential

equations of the form ∂i(y) = Aiy with derivations ∂i and matrices Ai ∈ Mn(K)

is sketched. This theory is developed in [Hei07], also for iterative linear partial

differential equations.

1.2. Umemura’s Galois theory of non-linear differential equations. —

Umemura developed a differential Galois theory, which is aimed at the study of

non-linear algebraic differential equations over differential fields of characteristic zero

(cf. [Ume96]). Starting with an extension of differential fields L|K of characteristic

0 such that L is finitely generated as field over K, he constructs a new extension of

partial differential algebras L|K and associates to it a group functor on the category

of commutative L-algebras whose points turn out to be a group of infinitesimal trans-

formations fulfilling certain partial differential equations, which he calls infinitesimal

Galois group. In honor of its inventor we will call it the Umemura functor. We

shortly recall this procedure and the definitions of the objects involved. We do not

completely stick to the original definitions in [Ume96]. Instead, we incorporate some

adaptions, which appeared in [Ume06].

Let L|K be an extension of differential fields of characteristic 0 with derivation

∂ that is finitely generated as an extension of abstract fields. We chose a transcen-

dence basis u1, . . . , un of L|K and denote by ∂u1 , . . . , ∂un the family of K-derivations

on L defined by ∂ui(uj) = δi,j for i, j ∈ {1, . . . , n}; this indeed defines uniquely

K-derivations on L, since L is finite separable over K(u1, . . . , un). We extend the

derivations ∂ui
to the formal power series ring LJtK by their action on the coefficients

of formal power series, i.e. for
∑
l∈N alt

l ∈ LJtK we define

∂ui
(
∑
l∈N

alt
l) :=

∑
l∈N

∂ui
(al)t

l.

On LJtK there is also the derivation ∂t with respect to t, which is defined by

∂t(
∑
l∈N

alt
l) :=

∑
l≥1

allt
l−1,(1.2)

and the derivations ∂t, ∂u1
, . . . , ∂un

commute pairwise. The map

(1.3) ι : L→ LJtK, a 7→
∑
l∈N

∂l(a)

l!
tl

is a homomorphism from the differential ring (L, ∂) and (LJtK, ∂t) and Umemura

calls it the universal Taylor homomorphism with respect to ∂. In the notation of

[Hei07] (cf. also [Mau10]) this is the iterative derivation associated to ∂. In fact,
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the homomorphism ι makes the diagrams

L
ι //

ι

��

LJtK

ιJtK
��

LJtK
t 7→t+u

// LJtKJuK

and L

id
!!

ι // LJtK

t 7→0

��

L

(1.4)

commutative and a homomorphism of algebras ι : L→ LJtK with this property is what

we call an iterative derivation on L. An equivalent definition uses the properties of

the induced maps (ι(k) : L → L)k∈N such that ι(a) =
∑
k∈N ι

(k)(a)tk for all a ∈ L.

In fact, the homomorphism ι is an iterative derivation on L if and only if the maps

(ι(k))k∈N fulfill the following properties for all k, l ∈ N and a, b ∈ L:

(1) ι(0) = id,

(2) ι(k)(a+ b) = ι(k)(a) + ι(k)(b),

(3) ι(k)(ab) =
∑
k=k1+k2

ι(k1)(a)ι(k2)(b) and

(4) ι(k) ◦ ι(l) =
(
k
k+l

)
ι(k+l).

We define an algebra

L := L{ι(L)}∂u1
,...,∂un

⊆ LJtK,

where L{ι(L)}∂u1
,...,∂un

denotes the differential subalgebra of (LJtK, {∂u1
, . . . , ∂un

})
generated by L (the constant formal power series) and ι(L). (1) One can easily show

that L is independent of the choice of the transcendence basis u1, . . . , un. We further

define

K := L[ι(K)] ⊆ LJtK.

Both, L and K, are differential subalgebras of (LJtK, {∂t, ∂u1 , . . . , ∂un}). Following

Umemura, we define a homomorphism

θu : L→ LJw1, . . . , wnK = LJwK, a 7→
∑
k∈Nn

∂k1u1
◦ · · · ◦ ∂knun

(a)

k!
wk.(1.5)

For every commutative L-algebra A we consider the tensor product

LJtK⊗L AJwK.

where the L-algebra structure on LJtK is given by the inclusion of L into LJtK as

constant formal power series and the one on AJwK is given by the composition of

θu : L → LJwK and the homomorphism LJwK → AJwK that is induced by the L-

algebra structure of A.

This tensor product is a partial differential ring with derivations ∂t (extended

trivially to the right factor) and derivations ∂i induced by ∂ui on LJtK and ∂wi on

1. In [Ume96], Umemura defined L to be a field, but later this definition was proposed. So we

adopt this definition here.
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AJwK for each i = 1, . . . , n. Since these derivations are continuous, they extend to

the completion

LJtK⊗̂LAJwK

with respect to the (w)-adic topology. The algebras L⊗̂LAJwK and K⊗̂LAJwK are

differential subalgebras of LJtK⊗̂LAJwK.

Definition 1.3. — We define the Umemura functor of L|K as a functor

Ume(L|K) : CAlgL → Grp,

where for any commutative L-algebra A we define Ume(L|K)(A) as the group of

automorphisms ϕ of the differential algebra L⊗̂LAJwK with respect to the derivations

∂t, ∂1, . . . , ∂n that leave K⊗̂LAJwK fixed and make the diagram

L⊗̂LAJwK

ϕ

��

idL ⊗̂πAJwK

))

L⊗̂LAJwK
idL ⊗̂πAJwK

// L⊗̂L(A/N(A))JwK,

commutative. If λ : A→ B is a homomorphism in CAlgL, we define

Ume(L|K)(λ) : Ume(L|K)(A)→ Ume(L|K)(B)

by sending ϕ ∈ Ume(L|K)(A) to ϕ⊗̂AJwK idBJwK, where we consider BJwK as AJwK-
algebra via the homomorphism λJwK : AJwK→ BJwK.

Umemura introduces Lie-Ritt functors in [Ume96] and shows that Ume(L|K)(A)

is such a Lie-Ritt functor. He also shows that Lie-Ritt functors give rise to formal

group schemes. If L|K is a Picard-Vessiot extension of differential fields with alge-

braically closed field of constants, then one can show that Ume(L|K) becomes iso-

morphic to the formal group scheme associated to the Galois group scheme Gal(L|K)

after a base extension to a finite étale extension of L. We give a definition of Lie-Ritt

functors and precise formulations for these claims in a more general framework in

sections 5 and 6.

We note that there is another Galois theory in a more geometric setting also aimed

at the study of non-linear differential equations by Malgrange (cf. [Mal01]).

2. Difference Galois theory

2.1. Galois theory of linear difference equations. — There is a Galois theory

of linear difference equations, which is in great parts analogous to the Galois theory of

linear differential equations, although there are significant differences. The standard

reference is [vdPS97].
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Let (K,σK) be an inversive difference field, i.e. K is a field and σK an automor-

phism of K. For A ∈ GLn(K) we consider the linear difference equation

(2.1) σ(y) = Ay.

Proposition 2.1 ([vdPS97]). — If the field of constants KσK := {a ∈ K | σK(a) =

a} is algebraically closed, then there exists a difference extension ring (R, σR) of

(K,σK) such that

(1) the difference ring (R, σR) is simple, i.e. it has no non-trivial σR-stable ideals,

(2) there exists a matrix Y ∈ GLn(R) such that σR(Y ) = AY and

(3) R is generated as K-algebra by the coefficients of Y and Y −1.

A difference ring (R, σR) having these properties is unique up to difference isomor-

phism. If L is the total quotient ring of R, then the constants of L and K are equal.

The ring R is called the Picard-Vessiot ring of equation (2.1) and L is called its total

Picard-Vessiot ring. One main difference to the Picard-Vessiot theory of differential

equations is that R is in general not an integral domain, but only a direct product

of integral domains, so that L is in general not a field, but only a direct product of

fields.

We denote the field of constants KσK of K by k. The difference Galois group

of the equation (2.1) over K (or of the difference ring extension L|K) is defined as

the group functor Gal(L|K) on the category of commutative k-algebras such that

for every commutative k-algebra A the group Gal(L|K)(A) consists of the difference

automorphisms of R ⊗k A that leave K ⊗k A fixed, where the automorphism σR is

extended trivially to the right factor of the tensor product R⊗k A.

2.2. Morikawa-Umemura’s Galois theory of non-linear difference equa-

tions. — Umemura sketched a Galois theory of non-linear algebraic difference

equations in characteristic 0 in [Ume06, Section 7] and developed it together with

Morikawa (cf. [Mor09], [MU09]). We recall their basic definitions.

Let L|K be an extension of difference fields of characteristic 0 that is finitely

generated as a field extension and denote the endomorphism of L by σ. Let u1, . . . , un
be a transcendence basis of L|K and ∂u1

, . . . , ∂un
be the system of K-derivations on

L defined by ∂ui(uj) = δi,j for i, j ∈ {1, . . . , n}. On the ring LN of functions from N
to L we define an endomorphism Σ by

Σ: LN → LN, Σ(f)(k) = f(k + 1) for all f ∈ LN and k ∈ N.(2.2)

We extend the derivations ∂u1
, . . . , ∂un

to LN by composition, i.e. for f ∈ LN, i ∈
{1, . . . , n} and k ∈ N we define (∂ui

(f))(k) := ∂ui
(f(k)). They commute pairwise and

also with the endomorphism Σ.

Similarly to the universal Taylor homomorphism (1.3), we define a homomorphism

(2.3) ι : L→ LN, a 7→ (k 7→ σk(a)),
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which Morikawa and Umemura call universal Euler morphism. As in the differential

case, one defines

L := L{ι(L)}∂u1 ,...,∂un
⊆ LN

as the differential subalgebra of (LN, {∂u1
, . . . , ∂un

}) that is generated by ι(L) and L

(the constant functions on N) and similarly

K := L[ι(K)] ⊆ LN.

Both are differential-difference subalgebras of (LN, {Σ, ∂u1
, . . . , ∂un

}). For any com-

mutative L-algebra A we consider the tensor product

LN ⊗L AJwK,

where the L-algebra structure on LN is given by the inclusion of L into LN as constant

functions and the one on AJwK is given by θu : L→ LJwK (cf. (1.5)).

We extend the endomorphism Σ (cf. (2.2)) from LN trivially to the tensor product

and denote it again by Σ. For each i = 1, . . . , n the derivations ∂ui
on LN and ∂wi

on AJwK give rise to a derivation ∂i on the tensor product, which commute mutually

and also commute with the endomorphism Σ.

Since the endomorphism Σ and the derivations ∂i are continuous, they extend to

the completion

LN⊗̂LAJwK

with respect to the (w)-adic topology. The algebras L⊗̂LAJwK and K⊗̂LAJwK are

differential-difference subalgebras of (LN⊗̂LAJwK, {Σ, ∂1, . . . , ∂n}).

Definition 2.2. — The Umemura functor of L|K is the functor

Ume(L|K) : CAlgL → Grp,

where for every commutative L-algebra A we define Ume(L|K)(A) to be the group of

automorphisms ϕ of the of differential-difference algebra (L⊗̂LAJwK, {Σ, ∂1, . . . , ∂n})
that leave K⊗̂LAJwK fixed and make the diagram

L⊗̂LAJwK

ϕ

��

idL ⊗̂πAJwK

((

L⊗̂LAJwK
idL ⊗̂πAJwK

// L⊗̂L(A/N(A))JwK,

commutative. If λ : A→ B is a homomorphism of commutative L-algebras, we define

Ume(L|K)(λ) : Ume(L|K)(A)→ Ume(L|K)(B)

by sending ϕ ∈ Ume(L|K)(A) to ϕ⊗̂AJwK idBJwK, where we consider BJwK as AJwK-
algebra via the homomorphism λJwK : AJwK→ BJwK.
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Morikawa showed that Ume(L|K)(A) is a Lie-Ritt functor (cf. [Mor09]). If L|K is

a Picard-Vessiot extension, then Ume(L|K) becomes isomorphic to the formal group

scheme associated to the Galois group scheme Gal(L|K) after a base extension to a

finite étale extension of L. In the sections 5 and 6 we present these results in a more

general situation.

As mentioned above, the total Picard-Vessiot rings of linear difference equations

are direct products of fields. In section 5 we show how one can remove the restriction

that L and K are fields in the theory of Morikawa-Umemura.

We note that following ideas of Malgrange, Galois theories for non-linear

(q-)difference equations have been developed by Casale and Granier.

PART II

UNIFIED GALOIS THEORY

In this part we show how the above mentioned theories can be unified.

3. Module algebras

In this section we recall the definition of module algebras and give several ex-

amples illustrating them. Let C be a commutative ring, (D,∆D, εD,mD, ηD) be a

C-bialgebra and let (A,mA, ηA) and (B,mB , ηB) be C-algebras.

Definition 3.1. — A homomorphism of C-modules Ψ: D⊗CA→ A is a D-module

algebra structure (cf. [Swe69]) on A if for all d ∈ D

(1) Ψ(d⊗ab) =
∑

(d) Ψ(d(1)⊗a)Ψ(d(2)⊗b) for all a, b ∈ A, using the sigma notation

∆D(d) =
∑

(d) d(1) ⊗ d(2) (cf. [Mon93, Notation 1.4.2])

(2) Ψ(d⊗ 1A) = εD(d)1A and

(3) Ψ makes A into a D-module.

The pair (A,Ψ) is then called a D-module algebra.

A homomorphism from a D-module algebra (A,ΨA) to a D-module algebra (B,ΨB)

is a homomorphism of C-algebras ϕ : A → B such that for all a ∈ A and d ∈ D we

have ϕ(ΨA(d⊗ a)) = ΨB(d⊗ ϕ(a)).

We illustrate this by examples:

Example 3.2. — Let A be a commutative C-algebra.
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(1) Let Dder := C[Ga] be the Hopf algebra on the coordinate ring of the additive

group scheme Ga over C. If Dder = C[d] with ∆(d) = d ⊗ 1 + 1 ⊗ d and

ε(d) = 0, then for every Dder-module algebra (A,Ψ) we have

Ψ(d⊗ ab) = Ψ(d⊗ a)b+ aΨ(d⊗ b) and Ψ(d⊗ 1A) = 0

for all a, b ∈ A and so ∂ : A → A, a 7→ Ψ(d ⊗ a) is a C-derivation on A.

Conversely, every C-derivation gives rise to a Dder-module algebra structure on

A, so that Dder-module algebra structures on A are in 1-1 correspondence with

C-derivations on A.

(2) Let Daut := C[Gm] be the Hopf algebra on the coordinate ring of the multiplica-

tive group scheme Gm over C. If Daut = C[g, g−1], σ(g) = g ⊗ g and ε(g) = 1,

then for every Daut-module algebra (A,Ψ) we have

Ψ(g ⊗ ab) = Ψ(g ⊗ a)Ψ(g ⊗ b) and Ψ(g ⊗ 1A) = 1A

for all a, b ∈ A and σ : A → A, a 7→ Ψ(g ⊗ a) is an automorphism of the C-

algebra A. Conversely, every automorphism of the C-algebra A gives rise to a

Daut-module algebra structure on A, so that Daut-module algebra structures on

A are in 1-1 correspondence with automorphisms of the C-algebra A.

(3) If Dend is the C-bialgebra with underlying C-algebra the polynomial algebra C[g]

over C and with coalgebra structure defined by ∆(gn) = gn⊗gn and ε(gn) = 1 for

all n ∈ N, then Dend-module algebra structures on A are in 1-1 correspondence

with endomorphisms of the C-algebra A.

(4) For a monoid G we define a C-bialgebra CG by taking the group algebra CG as

the underlying algebra with the coalgebra structure defined by ∆(g) = g ⊗ g and

ε(g) = 1 for all g ∈ G. Operations of the monoid G as endomorphisms on the

C-algebra A are in 1-1 correspondence with CG-module algebra structure on A.

If G = (N,+) is the monoid of natural numbers, then the bialgebra CN is

isomorphic to Dend. In the case where G = (Z,+) is the group of integers, the

bialgebra CZ is isomorphic to Daut.

(5) We recall that an iterative derivation on A over C is a family (θ(i))i∈N of en-

domorphisms of the C-module A such that θ(0) = idA and for all a, b ∈ A and

all i, j ∈ N

θ(i)(ab) =
∑

i=i1+i2

θ(i1)(a)θ(i2)(b)

and

θ(i) ◦ θ(j) =

(
i+ j

i

)
θ(i+j)

hold (cf. [HS37] or [Mat89, §27]).
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If DID := C〈θ(k) | k ∈ N〉 is the free C-module with generators θ(k) for all

k ∈ N and C-algebra structure defined by

θ(i)θ(j) :=

(
i+ j

i

)
θ(i+j) and 1 := θ(0)

and C-coalgebra structure defined by

∆(θ(i)) :=
∑

i1+i2=i

θ(i1) ⊗ θ(i2) and ε(θ(i)) = δi,0

for all i, j ∈ N, then DID -module algebra structures on A are in 1-1 correspon-

dence with iterative derivations on A over C. We also note that DID is a Hopf

algebra (cf. [Mon93, Example 5.6.8]).

(6) For each C-bialgebra D, there is a D-module algebra structure Ψ0 : D⊗CA→ A

on A defined as the composition

D ⊗C A
εD⊗idA // C ⊗C A

∼ // A,

which we call the trivial D-module algebra structure on A.

If Ψ: D ⊗C A → A is a homomorphism of C-modules, we denote by ρ : A →
CM(D,A) the homomorphism corresponding to Ψ under the isomorphism

CM(D ⊗C A,A) ∼= CM(A,CM(D,A)).(3.1)

We note that the C-module CM(D,A) carries a C-algebra structure with convolution

product

(f · g)(d) =
∑
(d)

f(d(1))g(d(2)) for all d ∈ D

and unit ηA ◦ εD. The following lemma can be directly verified.

Lemma 3.3. — The homomorphism Ψ is a D-module algebra structure on A if and

only if ρ is a homomorphism of C-algebras and makes the diagrams

A
ρ

//

ρ

��

CM(D,A)

CM(D,ρ)

��

CM(D,A)
CM(mD,A)

//
CM(D,CM(D,A)),

and A
ρ

//

id

''

CM(D,A)

ev1D

��

A

(3.2)

commutative, where we identify CM(D,CM(D,A)) with CM(D ⊗C D,A).

Example 3.4. — In example 3.2 above the algebras CM(D,A) and the homomor-

phisms ρ : A → CM(D,A) associated to the D-module algebra structures Ψ: D ⊗C
A→ A on a commutative C-algebra A are well-known:

(1) If Q ⊆ A, then CM(Dder, A) is isomorphic to the formal power series ring

AJtK. If ∂ is a C-derivation on A and Ψ the corresponding Dder-module algebra

structure on A, then the composition A
ρ→ CM(Dder, A)

∼→ AJtK is given by a 7→
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∑
k∈N

∂k(a)
k! tk. This is the universal Taylor homomorphism that we encountered

in (1.3) and the diagrams (3.2) correspond to those in (1.4).

(2) The C-algebra CM(Daut, A) is isomorphic to AZ, the ring of maps from the in-

tegers to A with pointwise addition and multiplication. If σ is an automorphism

of the C-algebra A and Ψ the corresponding Daut-module algebra structure, then

the composition A
ρ→ CM(Daut, A)

∼→ AZ is given by a 7→ (k 7→ σk(a)).

(3) The algebra CM(Dend, A) is isomorphic to AN, the ring of maps from the

natural numbers to A with pointwise addition and multiplication. If σ is an

endomorphism of the C-algebra A and Ψ the corresponding Dend-module al-

gebra structure, then the composition A
ρ→ CM(Dend, A)

∼→ AN is given by

a 7→ (k 7→ σk(a)). This homomorphism is the universal Euler homomorphism

(2.3).

(4) The C-algebra CM(CG,A) is isomorphic to AG, the ring of maps from G to

A with pointwise addition and multiplication. If Ψ: CG⊗C A→ A is the CG-

module algebra structure on A corresponding to an operation of G on A and

ρ : A → CM(CG,A) the corresponding homomorphism, then the composition

A→ CM(CG,A)→ AG is given by a 7→ (g 7→ g.a).

(5) The C-algebra CM(DID , A) is isomorphic to AJtK and if (θ(k))k∈N is an it-

erative derivation on A over C and Ψ the corresponding DID -module algebra

structure on A, then the composition A
ρ→ CM(DID , A)

∼→ AJtK is given by

a 7→
∑
k∈N θ

(k)(a)tk. We often denote this homomorphism by θ and refer with

it to the corresponding iterative derivation.

(6) The homomorphism ρ0 : A → CM(D,A) associated to the trivial D-module al-

gebra structure Ψ0 is given by ρ0(a)(d) = εD(d)a for all a ∈ A and d ∈ D.

We note that Dder and DID are isomorphic if Q ⊆ C. This explains why derivations

and iterative derivations are equivalent on commutative Q-algebras. In contrast,

CM(Dder, A) is not reduced in positive characteristic. It is isomorphic to the ring of

Hurwitz series as defined by Keigher (cf. [Kei97]).

If D1 and D2 are C-bialgebras, then D1⊗CD2 becomes a C-bialgebra in a natural

way. Commuting D1- and D2-module algebra structures on A give rise to a D1⊗CD2-

module algebra structure on A and vice versa.

In particular, DIDn := DID
⊗n-module algebra structures correspond to systems of

n commuting iterative derivations, which we call n-variate iterative derivations as in

[Hei07] (cf. also [Mau10]). Let A be a commutative C-algebra. Then we have

CM(DIDn , A) ∼= AJw1, . . . , wnK =: AJwK.(3.3)

Let (θ
(k)
1 )k∈N, . . . , (θ

(k)
n )k∈N be commuting iterative derivations on A over C, i.e. θ

(k)
i ◦

θ
(l)
j = θ

(l)
j ◦ θ

(k)
i for all i, j ∈ {1, . . . , n} and k, l ∈ N, and ρ : A → CM(DIDn , A)

be the homomorphism of C-algebras associated to the corresponding DIDn -module
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algebra structure on A. If we denote by θ : A → AJwK the composition of ρ and

the isomorphism (3.3) and by θ(k) the homomorphisms of the C-module A such that

θ(a) =
∑

k∈N θ
(k)(a)wk holds for all a ∈ A and k ∈ Nn, then they fulfill

θ(0) = idA, θ
(k)(ab) =

∑
k=k1+k2

θ(k1)(a)θ(k2)(b) and θ(k) ◦ θ(l) =

(
k + l

k

)
θ(k+l)(3.4)

for all a, b ∈ A and k, l ∈ Nn (cf. [Hei07]). Both θ : A → AJwK and the maps

(θ(k))k∈Nn determine the n-variate iterative derivation uniquely, so one could define

n-variate iterative derivations on A over C also as a homomorphism θ : A → AJwK
such that

A
θ

//

id

%%

AJwK

ε

��

A

and A
θ

//

θ

��

AJwK

θJwK
��

AJwK
wi 7→wi+vi // AJwKJvK,

commute, where ε : AJwK → A denotes the homomorphism of A-algebras defined by

ε(wi) = 0 for all i = {1, . . . , n}, or as a system of endomorphisms (θ(k))k∈Nn of the

C-module A such that (3.4) holds. Therefore we also use θ : A→ AJwK or the family

(θ(k))k∈N to refer to an n-variate iterative derivation.

Definition 3.5. — The constants of a D-module algebra (A,Ψ) are defined as

AΨ := {a ∈ A | Ψ(d⊗ a) = ε(d)a for all d ∈ D}.

They will also be denoted by Aρ , where ρ is the homomorphism associated to Ψ

via (3.1).

Example 3.6. — If R is a commutative ring, n ∈ N and S is one of the rings

R[x], RJxK or R(x), where x = (x1, . . . , xn) is an n-tuple of algebraically independent

elements over R. Then there is a unique n-variate iterative derivation on S over

R such that the associated homomorphism θx : S → SJwK (with w := (w1, . . . , wn))

fulfills θx(xi) = xi + wi for all i ∈ {1, . . . , n}. The components θ
(l)
x of θx fulfill

θ
(l)
x (xk) =

(
k
l

)
xk−l. They uniquely extend to n-variate iterative derivations over R

on formally étale extension of S by [Mat89, Theorem 27.2], which we again denote

by θx.

Lemma 3.7. — (1) The C-algebra CM(D,A) becomes a D-module algebra by the

homomorphism of C-modules

Ψint : D ⊗C CM(D,A)→ CM(D,A)

that sends d⊗ f ∈ D ⊗C CM(D,A) to the homomorphism of C-modules

Ψint(d⊗ f) : D → A, d̄ 7→ f(d̄d) for all d̄ ∈ D.
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(2) The constants CM(D,A)Ψint are equal to ρ0(A), where ρ0 : A → CM(D,A) is

the homomorphism associated to the trivial D-module algebra structure Ψ0 on

A (cf. example 3.4 (6)).

(3) If D′ is another C-bialgebra and (A,Ψ′) is a D′-module algebra with associated

homomorphism ρ′ : A → CM(D′, A), then CM(D,A) has a D′-module algebra

structure with associated homomorphism given by

(3.5) CM(D, ρ′) : CM(D,A)→ CM(D,CM(D′, A)) ∼= CM(D′,CM(D,A)).

This D′-module algebra structure commutes with the D-module algebra structure

Ψint on CM(D,A) and thus CM(D,A) becomes a D ⊗C D′-module algebra.

For the bialgebras Dder and Dend the first part of the last lemma has the following

concrete form:

(1) If A is a commutative C-algebra containing Q, then under the isomorphism

CM(Dder, A) ∼= AJtK the Dder-module algebra structure Ψint on CM(Dder, A)

corresponds the derivation ∂t with respect to t (cf. (1.2)).

(2) The Dend-module algebra structure Ψint on CM(Dend, A) corresponds to the

shift endomorphism Σ (cf. (2.2)) under the isomorphism CM(Dend, A) ∼= AN.

Notation. — By lemma 3.3, all information about a D-module algebra structure Ψ

is encoded also in the associated homomorphism ρ. Therefore, we will also use (A, ρ)

to refer to a D-module algebra (A,Ψ).

4. Picard-Vessiot extensions of Artinian simple module algebras

Amano and Masuoka unified the Picard-Vessiot theories of differential equations

and difference equations using Artinian simple commutative D-module algebras (cf.

[AM05]). But they restrict themselves to the case where D is a Hopf algebra fulfilling

some additional hypothesis. We sketch how their definitions and some of their results

can be generalized so that the bialgebra Dend is also within our scope.

Notation. — Let C be a field, G be a monoid and let D1 be an irreducible pointed

cocommutative Hopf algebra of Birkhoff-Witt type, i.e. D1 is of the form B(U),

where U is a C-vector space and B(U) is the cofree pointed irreducible cocommutative

coalgebra on U as defined in [Swe69, pp. 261-271]. We assume that D1 is a CG-

module algebra, where CG is the bialgebra introduced in example 3.2 (4), and define

D as the smash product D1#CG.

Remark 4.1. — These conditions allow to chose D for example as Dend, Daut or

DID . The cocommutative pointed irreducible commutative Hopf algebra Dder is of

Birkhoff-Witt type if Q ⊆ C (and then Dder
∼= DID).
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Definition 4.2. — An Artinian simple commutative D-module algebra is a commu-

tative D-module algebra that is simple as D-module algebra, i.e. it has no non-trivial

D-stable ideals, and Artinian as a ring.

Definition 4.3. — An extension of Artinian simple commutative D-module algebras

(L, ρL)|(K, ρK) is Picard-Vessiot if the following hold:

(1) The constants LρL of L coincide with the constants KρK of K.

(2) There exists an intermediate D-module algebra (R, ρR) of K ⊆ L such that the

total quotient ring Q(R) of R is equal to L and such that the KρK -subalgebra

H := (R⊗K R)ρR⊗ρR

of R⊗K R generates R⊗K R as left (or equivalently right) R-algebra, i.e.

R ·H = R⊗K R (or H ·R = R⊗K R).(4.1)

We note that the Picard-Vessiot extensions in the differential and difference context

mentioned in the first part are examples of Picard-Vessiot extensions of Artinian

simple commutative module algebras. In fact, the Picard-Vessiot ring R fulfills the

conditions in (2), where the statement (4.1) (or more precisely the statement (4.2)

below following from it) is a theorem in the Picard-Vessiot theories of differential and

difference equations, stating that SpecR is a Gal(L|K)-torsor.

Proposition 4.4. — Let (L, ρL)|(K, ρK) be a Picard-Vessiot extension of Artinian

simple commutative D-module algebras with constants k := LρL = KρK and (R, ρR)

and H be as in definition 4.3. Then the following hold:

(1) The homomorphism

(4.2) µ : (R⊗k H, ρR ⊗ ρ0)→ (R⊗K R, ρR ⊗ ρR), a⊗ h 7→ (a⊗ 1) · h

is an isomorphism of D-module algebras.

(2) The k-algebra H carries a Hopf algebra structure induced by the R-coalgebra

structure on R⊗K R, given by the counit

ε : R⊗K R→ R, a⊗ b 7→ ab

and the comultiplication

∆: R⊗K R→ (R⊗K R)⊗R (R⊗K R), a⊗ b 7→ (a⊗ 1)⊗ (1⊗ b).

The antipode S on H is induced by the map

τ : R⊗K R→ R⊗K R, a⊗ b 7→ b⊗ a.

(3) The intermediate D-module algebra (R, ρR) satisfying condition (2) in definition

4.3 is unique.
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Proof. — This can be proven as [AM05, Proposition 3.4], only the proof of part (3)

requires a small modification, cf. [Hei].

Definition 4.5. — If L|K is a Picard-Vessiot extension of Artinian simple com-

mutative D-module algebras, then R and H in definition 4.3 are called the principal

D-module algebra and the Hopf algebra of a Picard-Vessiot extension L|K, respec-

tively. If we want to indicate R and H, we denote the Picard-Vessiot extension L|K
also by (L|K,R,H).

Definition 4.6. — If (L|K,R,H) is a Picard-Vessiot extension of Artinian simple

commutative D-module algebras, then we define the Galois group scheme Gal(L|K)

of L|K to be the affine group scheme SpecH over the constants KΨK = LΨL .

Proposition 4.7. — Let L|K be a Picard-Vessiot extension of Artinian simple com-

mutative D-module algebras with principal D-module algebra (R, ρR), Hopf algebra H

and constants k := LΨL . Then for any commutative k-algebra A the group of A-points

of Gal(L|K) = SpecH is isomorphic to the group of automorphisms of the D-module

algebra (R⊗k A, ρR ⊗ ρ0) that leave K ⊗k A fixed.

Proof. — The proof of [AM05, Remark 3.11] also holds in our situation.

Amano and Masuoka also establish a Galois correspondence for Picard-Vessiot ex-

tensions of Artinian simple commutative D-module algebras, D being a Hopf algebra

fulfilling some additional conditions.

5. Generalized Galois theory of Artinian simple module algebras

Now we show that the theories of Umemura and Morikawa, which we sketched in

part I, can be unified in a similar manner as the Picard-Vessiot theories for differential

and difference equations that have been unified by Amano, Masuoka and Takeuchi

(cf. [Tak89], [AM05]). In this unified theory we do not assume that the module

algebras are fields (as in the difference Galois theory of Morikawa-Umemura) and we

make no assumption on the characteristic, though we make a separability assumption.

As in section 4, let C be a field, G be a monoid and let D1 be an irreducible

pointed cocommutative Hopf algebra of Birkhoff-Witt type such that D1 is a CG-

module algebra, where CG is the bialgebra introduced in example 3.2 (4). We define

D to be the smash product D1#CG.

Let L|K be an extension of Artinian simple commutative D-module algebras such

that all g ∈ G operate as injective endomorphisms on L. Then L and K are both

direct products of fields (cf. [Hei]). In fact

L ∼=
∏

Q∈Ω(L)

L/Q and K ∼=
∏

P∈Ω(K)

K/P.
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We assume for every Q ∈ Ω(L) the field L/Q is a separable and finitely generated over

K/(Q∩K) and that its transcendence degree is the same for all Q ∈ Ω(L), say n. Let

u(Q) = (u
(Q)
1 , . . . , u

(Q)
n ) be a separating transcendence basis of the extension L/Q of

K/(Q∩K) and θu(Q) : L/Q→ L/QJwK be the associated n-variate iterative derivation

of L/Q over K/(Q ∩ K) defined by θu(Q)(u
(Q)
i ) = u

(Q)
i + wi for all i = 1, . . . , n

(cf. example 3.6). There exists an n-variate iterative derivation on the product

L ∼=
∏
Q∈Ω(L) L/Q over K such that the projections to all factors become iterative

differential homomorphisms (cf. [Hei10, Proposition 2.2.26]). We denote this n-

variate iterative derivation by θu.

5.1. The Umemura functor. — We denote by ρ : L→ CM(D,L) the homomor-

phism of C-algebras associated to the given D-module algebra structure on L and the

one associated to the trivial D-module algebra structure on L by ρ0. We define

L := ρ0(L){ρ(L)}θu and K := ρ0(L)[ρ(K)]

as the iterative differential subalgebras of (CM(D,L), θu) generated by ρ0(L) and

ρ(L) and by ρ0(L) and ρ(K), respectively. The algebra ρ0(L)[ρ(K)] is in fact already

closed with respect to θu and L does not depend on the choice of the separating

transcendence bases u(Q) of L/Q over K/(K ∩ Q). Both are D ⊗C DIDn -module

subalgebras of (CM(D,L), ρint ⊗ θu). (2)

For every commutative L-algebra A we consider the tensor product

CM(D,L)⊗L AJwK,

where the L-algebra structure on CM(D,L) is given by ρ0 : L → CM(D,L) (cf.

example 3.2 (6)) and the one on AJwK is given by the composition of θu : L→ LJwK
and the homomorphism LJwK→ AJwK induced by the L-algebra structure of A. This

tensor product carries a D ⊗C DIDn -module algebra structure ρ ⊗ θ, induced by

(CM(D,L), ρint ⊗ θu) (L, ρ0 ⊗ θu)
ρ0oo

θu // (AJwK, ρ0 ⊗ θw).(5.1)

The homomorphism

ρ ⊗ θ : CM(D,L)⊗L AJwK→ CM(D ⊗C DIDn ,CM(D,L)⊗L AJwK)

is continuous with respect to the (w)-adic topology on CM(D,L) ⊗L AJwK and the

(w,T )-adic topology on

CM(D,CM(D,L)⊗L AJwK)JT K ∼= CM(D ⊗C DIDn ,CM(D,L)⊗L AJwK).

Therefore, this D ⊗DIDn -module algebra structure extends to the completion

CM(D,L)⊗̂LAJwK

2. Originally Umemura defined L to be a field, but later the definition was changed. The definition

we give here coincides with the definition in [Mor09] if D = Dend and if L and K are fields.
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with respect to the (w)-adic topology. The algebras L⊗̂LAJwK and K⊗̂LAJwK are

D ⊗C DIDn -module subalgebras.

Definition 5.1. — The Umemura functor of L|K is the functor

Ume(L|K) : CAlgL → Grp,

where for each commutative L-algebra A we define Ume(L|K)(A) to be the group of

automorphisms ϕ of the D ⊗C DIDn-module algebra L⊗̂LAJwK that leave K⊗̂LAJwK
fixed and make the diagram

L⊗̂LAJwK

ϕ

��

idL ⊗̂πAJwK

((

L⊗̂LAJwK
idL ⊗̂πAJwK

// L⊗̂L(A/N(A))JwK,

commutative. If λ : A→ B is a homomorphism of commutative L-algebras, we define

Ume(L|K)(λ) : Ume(L|K)(A)→ Ume(L|K)(B)

by sending ϕ ∈ Ume(L|K)(A) to ϕ⊗̂AJwK idBJwK, where we consider BJwK as AJwK-
algebra via the homomorphism λJwK : AJwK→ BJwK.

5.2. Lie-Ritt functors. — Umemura defines Lie-Ritt functors in [Ume96]. Here

we use a slightly changed version of Lie-Ritt functors, which we define now.

Notation. — In this subsection let L be an arbitrary commutative ring and A be a

commutative L-algebra.

The set of all infinitesimal coordinate transformations of n variables over A

ΓnL(A) :={Φ = (ϕi)i=1,...,n ∈ (AJwK)n | ϕi ≡ wi mod N(A)JwK for all i = 1, . . . ,n},

where n ∈ N and where w denotes the tuple (w1, . . . , wn), is a group with multiplica-

tion given by composition, i.e. if Φ = (ϕ1, . . . , ϕn),Ψ ∈ ΓnL(A), then Φ ·Ψ is defined

as (ϕ1(Ψ), . . . , ϕn(Ψ)) (cf. [Bou81, Chapitre IV, §4.3 and §4.7]).

We equip the ring AJwK := AJw1, . . . , wnK with the n-variate iterative derivation θ

over A with respect to w (cf. example 3.6) and we extend it to

AJwK{{Y }} := AJw1, . . . , wnKJY
(k)
i | i = 1, . . . , n,k ∈ NnK

with variables Y
(k)
i for i ∈ {1, . . . , n} and k ∈ Nn by

θ(l)
(
Y

(k)
i

)
:=

(
k + l

k

)
Y

(k+l)
i .

We denote by AJwK{AJY K}θ the iterative differential subring of AJwK{{Y }} gener-

ated by AJw,Y K, where Y denotes the tuple (Y
(0)
1 , . . . , Y

(0)
n ). For F ∈ AJxK{AJY K}θ
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and Φ = (ϕ1, . . . , ϕn) ∈ ΓnL(A) we denote by F|Y =Φ the image of F under the ho-

momorphism AJwK{AJY K}θ → AJwK that sends Y
(k)
i to θ(k)(ϕi).

Definition 5.2. — A Lie-Ritt functor over L is a group functor G on the cate-

gory of commutative L-algebras such that there exists an n ∈ N and an ideal I E
LJwK{LJY K}θ = LJw1, . . . , wnK{LJY1, . . . , YnK}θ such that G(A) ∼= Z(I)(A) for every

commutative L-algebra A, where

Z(I)(A) := {Φ ∈ ΓnL(A) | F|Y =Φ = 0 for all F ∈ I}.

Remark 5.3. — In [Ume96, Definition 1.8] Lie-Ritt functors over L are defined

using ideals in LJwK{{Y }}. Since the term F|Y =Φ is not well defined for elements

F ∈ LJwK{{Y }} in general, we use the definition above instead.

Example 5.4. — We define a subgroup functor G+ of Γ1Z as

G+(A) := {a0 + w | a0 ∈ N(A)}

for all commutative rings A. Let I be the ideal in ZJwK{ZJY K}θ generated by Y (1)−1

and Y (k) for all k ≥ 2. Then G+ = Z(I), i.e. G+ is a Lie-Ritt functor over Z.

Furthermore, G+ is isomorphic to the additive formal group scheme Ĝa.

Proof. — Let A be a commutative ring. An element ϕ(w) =
∑
i≥0 aiw

i ∈ Γ1Z lies

in Z(I) if and only if 1 = θ(1)(ϕ) =
∑
i≥1 aiiw

i−1 and for all k ≥ 2 the equation

0 = θ(k)(ϕ) =
∑
i≥k
(
i
k

)
aiw

i−k holds. This is the case if and only if a1 = 1 and ak = 0

for all k ≥ 2.

Example 5.5. — We define a subgroup functor G∗ of Γ1Z as

G∗(A) := {(1 + a1)w | a1 ∈ N(A)}

for all commutative rings A. Then G∗ is a Lie-Ritt functor over Z and G∗ = Z(I),

where I = ({wY (1) − Y, Y (k) | k ≥ 2}). Furthermore, G∗ is isomorphic to the multi-

plicative formal group scheme Ĝm.

Proof. — An element ϕ(w) =
∑
i≥0 aiw

i ∈ Γ1Z lies in Z(I)(A) if and only if

w
∑
i≥1 iaiw

i−1 =
∑
i≥0 aiw

i and θ(k)(
∑
i≥0 aiw

i) = 0 hold for all k ≥ 2. This is the

case if and only if a0 = 0 and ak = 0 for all k ≥ 2, i.e. if ϕ lies in G∗(A).

The analogs of these examples in the setting of Umemura appeared in [Ume96,

Example 1.9(i) and (ii)]. Since he works over Q, it is sufficient to consider the equation

Y (1) − 1 and wY (1) − Y in the first and second example, respectively. In the general

case we have to add the equations Y (k) for k ≥ 2.

Proposition 5.6. — Every Lie-Ritt functor over a commutative ring L is isomor-

phic to a formal group scheme over L.
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Proof. — This is shown in [Ume96] in the case of Lie-Ritt functors that are subgroup

functors of infinitesimal transformations of one variable. The general case is proven

in [Hei10].

5.3. The Umemura functor as a Lie-Ritt functor. —

Notation. — We now continue to use the notation from the beginning of this section.

Theorem 5.7. — The functor Ume(L|K) is a Lie-Ritt functor over L.

Idea of proof. — Let A be a commutative L-algebra A. There exists an injective

homomorphism

µA,u : CM(D,L)⊗̂LAJwK→ CM(D,AJwK)(5.2) ∑
i∈Nn

fi ⊗ aiwi 7→
∑
i∈Nn

θu(fi) · ρ0(aiw
i).

We consider the map

Ume(L|K)(A) −→ ΓnL(A)

ϕ 7−→ (ev1D
◦µA,u ◦ ϕ(ρ(ui)⊗ 1)− ui)i=1,...,n.

(5.3)

Then one shows that it is well defined, i.e. that the image of ϕ is an element of

ΓnL(A), that it respects the group structures and that its image is of the form Z(I).

For details we refer to [Hei10] or [Hei].

6. Comparison of the general theory with Picard-Vessiot theory

In this section we examine the extension L|K defined above in the case where L|K
is a finitely generated Picard-Vessiot extension of Artinian simple commutative D-

module algebras and compare the Umemura functor Ume(L|K) with the Galois group

scheme Gal(L|K) of L|K as defined by Amano and Masuoka in [AM05].

Notation. — Let C and D be as in section 5 and let (L|K,R,H) be a Picard-

Vessiot extension of Artinian simple commutative D-module algebras such that R|K
is smooth. We further assume that there exists a matrix X ∈ GLn(R) such that

R = K[X,X−1] and d(X)X−1 ∈ Mn(K) for all d ∈ D (if D is a Hopf algebra as in

[AM05], then this is the case, cf. ibid., Theorem 4.6). For every (minimal) prime

ideal Q of L the field L/Q is separable and finitely generated over K/(Q ∩ K) (cf.

[Gro64, Chapitre 0, Théorème 19.6.1]). We assume that the transcendence degree of

L/Q over K/(K ∩Q) is the same for all Q ∈ Ω(L), say n. Let u(Q) = (u
(Q)
1 , . . . , u

(Q)
n )

be a separating transcendence basis of this extension and let θu be the n-variate

iterative derivation on L over K as defined at the beginning of section 5. We denote

the homomorphism associated to the D-module algebra structure on L by ρ : L →
CM(D,L).
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In the case of Picard-Vessiot extensions the algebra L has a particularly simple

form. By using the existence of the principal D-module algebra R for the extension

L|K and its properties (cf. theorem 4.4) and linear disjointness from constants (cf.

[AM05, Corollary 3.2] or [Hei]), one obtains the following lemma.

Lemma 6.1. — The subring of CM(D,L) generated by ρ0(L) and ρ(L) is closed

under the n-variate iterative derivation θu and ρ0(L) and ρ(L) are linearly disjoint

over the field of constants k := Lρ . We thus have an isomorphism

(6.1) L = ρ0(L)[ρ(L)] ∼= ρ0(L)⊗k ρ(L)

of D-module algebras. Similarly, ρ0(L)[ρ(R)] is closed under θu and ρ0(L) and ρ(R)

are linearly disjoint over k, i.e.

(6.2) ρ0(L)[ρ(R)] ∼= ρ0(L)⊗k ρ(R).

Theorem 6.2. — If the field of constants k := Lρ is perfect, then there exists a finite

étale extension L′ of L such that Ume(L|K)×L L′ is isomorphic to the formal group

scheme ̂Gal(L|K)L′ associated to the base extension Gal(L|K)L′ = Gal(L|K) ×k L′
of the Galois group scheme Gal(L|K).

Proof. — The proof can be found in [Hei]. In the case where L and K are fields a

slightly weaker version of this result was already shown in [Hei10].

Corollary 6.3. — Under the assumptions of theorem 6.2 there exists a finite étale

extension L′ of L and an isomorphism

Ume(L|K)(L′[ε]/(ε2)) ∼= Lie(Gal(L|K))⊗k L′.

Proof. — This follows immediately from theorem 6.2 by taking A = L′[ε]/(ε2).

In the case D = Dend the statement of corollary 6.3 is similar to the one of [Mor09,

Theorem 3.3] and to [Ume]. Taking D = Dder, this corollary provides a similar result

as [Ume96, Theorem 5.15] in the case of finitely generated Picard-Vessiot extensions

of differential fields in characteristic zero.
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