Reconstruction Theorems in Category Theory - Exercise Sheet 1

University of Siegen
Dr. Florian Heiderich

Fall Term 2016/2017
Due on November 3, 2016

Exercise 1.

(i) Let A be a ring, M and M^{\prime} right A-modules and N and N^{\prime} left A-modules. Let further $f: M \rightarrow M^{\prime}$ be a morphism of right A-modules and $g: N \rightarrow N^{\prime}$ be a morphism of left A-modules. The map $M \times N \rightarrow M^{\prime} \otimes_{A} N^{\prime},(m, n) \mapsto f(m) \otimes g(n)$ induces a morphism $f \otimes g: M \otimes_{A} N \rightarrow M^{\prime} \otimes_{A} N^{\prime}$. Show that

$$
f \otimes g=\left(f \otimes \operatorname{id}_{N^{\prime}}\right) \circ\left(\mathrm{id}_{M} \otimes g\right)=\left(\operatorname{id}_{M^{\prime}} \otimes g\right) \circ\left(f \otimes \mathrm{id}_{N}\right)
$$

(ii) Let R, S and T be rings, M and M^{\prime} be (R, S)-bimodules, $f: M \rightarrow M^{\prime}$ a morphism of (R, S)-bimodules, N and N^{\prime} be (S, T)-bimodules and g a morphism of (S, T)-bimodules. Show that the morphism $f \otimes g$ constructed in (i) is a morphism of (R, T)-bimodules.
(iii) Let A be a commutative ring and let M and N be symmetric (A, A)-bimodules. Show that there exists a unique morphism of (A, A)-bimodules $\tau_{M, N}: M \otimes_{A} N \rightarrow N \otimes_{A} M$ such that $\tau_{M, N}(m \otimes n)=n \otimes m$ for all $m \in M$ and $n \in N$.
(iv) Let A be a commutative ring and M, M^{\prime}, N and N be symmetric (A, A)-bimodules. Let $f: M \rightarrow M^{\prime}$ and $g: N \rightarrow N^{\prime}$ be morphisms of (A, A)-bimodules. Show that
$(g \otimes f) \circ \tau_{M, N}=\tau_{M^{\prime}, N^{\prime}} \circ(f \otimes g)=\left(g \otimes \mathrm{id}_{M^{\prime}}\right) \circ \tau_{M^{\prime}, N^{\prime}} \circ\left(f \otimes \mathrm{id}_{N}\right)=\left(\mathrm{id}_{N^{\prime}} \otimes f\right) \circ \tau_{M, N^{\prime}} \circ\left(\mathrm{id}_{M} \otimes g\right)$.
(v) A be a commutative ring and let M_{1}, M_{2} and M_{3} be symmetric (A, A)-bimodules. Show that

$$
\tau_{M_{1}, M_{2} \otimes_{A} M_{3}}=\left(\mathrm{id}_{M_{2}} \otimes \tau_{M_{1}, M_{3}}\right) \circ\left(\tau_{M_{1}, M_{2}} \otimes \mathrm{id}_{M_{3}}\right) .
$$

and

$$
\tau_{M_{1} \otimes A M_{2}, M_{3}}=\left(\tau_{M_{1}, M_{3}} \otimes \operatorname{id}_{M_{2}}\right) \circ\left(\operatorname{id}_{M_{1}} \otimes \tau_{M_{2}, M_{3}}\right) .
$$

Note: These identities can be visualized by the string diagrams

and

Exercise 2.

(i) Let A be a ring. Show that a left A-module M is isomorphic to $A \otimes_{A} M$ and that a right A-module M is isomorphic to $M \otimes_{A} A$.
(ii) Let k be a commutative ring and let $\left(A, \mathrm{~m}_{A}, \eta_{A}\right)$ and $\left(A^{\prime}, \mathrm{m}_{A^{\prime}}, \eta_{A^{\prime}}\right)$ be k-algebras. Show that $A \otimes_{k} A^{\prime}$ becomes a k-algebra with respect to the multiplication

$$
A \otimes_{k} A^{\prime} \otimes_{k} A \otimes_{k} A^{\prime} \xrightarrow{\operatorname{id}_{A} \otimes \tau_{A^{\prime}, A} \otimes \mathrm{id}_{A^{\prime}}} A \otimes_{k} A \otimes_{k} A^{\prime} \otimes_{k} A^{\prime} \xrightarrow{\mathrm{m}_{A} \otimes \mathrm{~m}_{A^{\prime}}} A \otimes_{k} A^{\prime}
$$

and unit $\eta_{A} \otimes \eta_{A^{\prime}}: k \rightarrow A \otimes_{k} A^{\prime}$, where we identify $k \otimes_{k} k$ with k using (i).

Exercise 3.

Let k be a commutative ring, A_{1} and A_{2} be k-algebras and M be a k-module. We say that a left A_{1}-module structure $\psi_{1}: A_{1} \otimes_{k} M$ and a left A_{2}-module structure $\psi_{2}: A_{2} \otimes_{k} M \rightarrow M$ on M commute if the diagram

commutes.
(i) Show that a left $A_{1} \otimes_{k} A_{2}$-module structure on M, given by a morphism $\psi:\left(A_{1} \otimes_{k} A_{2}\right) \otimes_{k}$ $M \rightarrow M$, induces commuting left A_{i}-module structures $\psi_{i}: A_{i} \otimes_{k} M \rightarrow M(i=1,2)$ on M.
(ii) Show that conversely commuting left A_{1}-module and left A_{2}-module structures on M, given by morphisms $\psi_{1}: A_{1} \otimes_{k} M \rightarrow M$ and $\psi_{2}: A_{2} \otimes_{k} M \rightarrow M$, induce a left $A_{1} \otimes_{k} A_{2^{-}}$ module structure $\psi:\left(A_{1} \otimes_{k} A_{2}\right) \otimes_{k} M \rightarrow M$ on M.

Exercise 4.

Let k be a commutative ring. Let further $f: M \rightarrow M^{\prime}$ and $g: N \rightarrow N^{\prime}$ be morphisms of k-modules.
(i) Show that $f \otimes g: M \otimes_{k} N \rightarrow M^{\prime} \otimes_{k} N^{\prime}$ is surjective if f and g are surjective.
(ii) Give an example of injective morphisms f and g such that $f \otimes g$ is not injective.

