Reconstruction Theorems in Category Theory - Exercise Sheet 2

University of Siegen
Dr. Florian Heiderich

Fall Term 2016/2017
Due on November 17, 2016

Exercise 1.

Let R, S and T be rings, $\left(E_{i}\right)_{i \in I}$ be a family of (R, S)-bimodules and $\left(F_{j}\right)_{j \in J}$ be a family of (S, T)-bimodules.
(i) Show that there is a morphism of (R, T)-bimodules

$$
f:\left(\prod_{i \in I} E_{i}\right) \otimes_{S}\left(\prod_{j \in J} F_{j}\right) \rightarrow \prod_{(i, j) \in I \times J}\left(E_{i} \otimes_{S} F_{j}\right)
$$

such that $f\left(\left(e_{i}\right)_{i \in I} \otimes\left(f_{j}\right)_{j \in J}\right)=\left(e_{i} \otimes f_{j}\right)_{(i, j) \in I \times J}$.
(ii) Show that there is an isomorphism of (R, T)-bimodules

$$
g:\left(\bigoplus_{i \in I} E_{i}\right) \otimes_{S}\left(\bigoplus_{j \in J} F_{j}\right) \rightarrow \bigoplus_{(i, j) \in I \times J}\left(E_{i} \otimes_{S} F_{j}\right) .
$$

such that $g\left(\left(\sum_{i \in I} e_{i}\right) \otimes\left(\sum_{j \in J} f_{j}\right)\right)=\sum_{(i, j) \in I \times J}\left(e_{i} \otimes f_{j}\right)$.
(iii) Let k be a commutative ring, E a k-module and F a free k-module with basis $\left(b_{j}\right)_{j \in J}$. Show that $E \otimes_{k} F$ is isomorphic to $E^{(J)}$ as k-module and that every element of $E \otimes_{k} F$ can be uniquely written as $\sum_{j \in J} e_{j} \otimes b_{j}$, where $\left(e_{j}\right)_{j \in J}$ is a family of elements in E, only finitely many of them not being equal to 0 .
(iv) Let k be a commutative ring and let E and F be free k-modules with bases $\left(a_{i}\right)_{i \in I}$ and $\left(b_{j}\right)_{j \in J}$, respectively. Show that $E \otimes_{k} F$ is a free k-module with basis $\left(a_{i} \otimes b_{j}\right)_{(i, j) \in I \times J}$.
(v) $\left(^{*}\right.$) Show that the morphism f in (i) is in general neither injective nor surjective.

Exercise 2.

Let $C:=\mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ and $D:=\mathbb{Z} \oplus 2 \mathbb{Z} / 4 \mathbb{Z}$.
(i) Show that C is a \mathbb{Z}-coalgebra with respect to the comultiplication Δ and counit ε given by the morphisms of \mathbb{Z}-modules $\Delta: C \rightarrow C \otimes_{\mathbb{Z}} C$ and $\varepsilon: C \rightarrow \mathbb{Z}$ defined by

$$
\begin{array}{rlrl}
\Delta((1,0)): & :=(1,0) \otimes(1,0) & \Delta((0,1)):=(1,0) \otimes(0,1)+(0,1) \otimes(1,0) \\
\varepsilon((1,0)):=1 & \varepsilon((0,1)):=0 .
\end{array}
$$

(ii) Show that D becomes a \mathbb{Z}-coalgebra with respect to comultiplication Δ_{1} and counit ε_{1} given by the morphisms of \mathbb{Z}-modules $\Delta_{1}: D \rightarrow D \otimes_{\mathbb{Z}} D$ and $\varepsilon_{1}: D \rightarrow \mathbb{Z}$ defined by

$$
\begin{aligned}
\Delta_{1}((1,0)) & :=(1,0) \otimes(1,0) & \Delta_{1}((0,2)):=(1,0) \otimes(0,2)+(0,2) \otimes(1,0) \\
\varepsilon_{1}((1,0)) & :=1 & \varepsilon_{1}((0,2)):=0 .
\end{aligned}
$$

(iii) Show that D becomes a \mathbb{Z}-coalgebra with respect to comultiplication Δ_{2} and counit ε_{2} given by the morphisms of \mathbb{Z}-modules $\Delta_{2}: D \rightarrow D \otimes_{\mathbb{Z}} D$ and $\varepsilon_{2}: D \rightarrow \mathbb{Z}$ defined by

$$
\begin{array}{rlrl}
\Delta_{2}((1,0)) & :=(1,0) \otimes(1,0) & \Delta_{2}((0,2)) & :=(1,0) \otimes(0,2)+(0,2) \otimes(0,2)+(0,2) \otimes(1,0) \\
\varepsilon_{2}((1,0)):=1 & \varepsilon_{2}((0,2)): & :=0 .
\end{array}
$$

(iv) Show that the natural inclusion of D in C is a morphism of \mathbb{Z}-coalgebras from ($D, \Delta_{1}, \varepsilon_{1}$) to (C, Δ, ε) and also from $\left(D, \Delta_{2}, \varepsilon_{2}\right)$ to (C, Δ, ε).
(v) Show that $\left(D, \Delta_{1}, \varepsilon_{1}\right)$ and $\left(D, \Delta_{2}, \varepsilon_{2}\right)$ are not isomorphic as \mathbb{Z}-coalgebras.

Exercise 3.

Let k be a field and M be a monoid.
(i) Show that the morphism

$$
\begin{equation*}
{ }_{k} \mathcal{M}(k M, k) \otimes_{k}{ }_{k} \mathcal{M}(k M, k) \rightarrow{ }_{k} \mathcal{M}\left(k M \otimes_{k} k M, k\right), \quad f \otimes g \mapsto\left(c \otimes c^{\prime} \mapsto f(c) g\left(c^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

is an isomorphism if and only if M is finite.
(ii) Show that there is an isomorphism of k-algebras

$$
{ }_{k} \mathcal{M}(k M, k) \cong k^{M}
$$

where k^{M} is the k-algebra of functions on $M, k M$ is the grouplike coalgebra with basis M and ${ }_{k} \mathcal{M}(k M, k)$ is the convolution algebra. (The algebra structure on ${ }_{k} \mathcal{M}(k M, k)$ is given by

$$
{ }_{k} \mathcal{M}(k M, k) \otimes_{k} \mathcal{M}(k M, k) \xrightarrow{\mathbb{1}}{ }_{k} \mathcal{M}\left(k M \otimes_{k} k M, k\right) \xrightarrow{k^{\mathcal{M}}(\Delta, k)}{ }_{k} \mathcal{M}(k M, k)
$$

as multiplication and

$$
k \xrightarrow{\sim}{ }_{k} \mathcal{M}(k, k) \xrightarrow{k \mathcal{M}(\varepsilon, k)}{ }_{k} \mathcal{M}(k M, k)
$$

as unit.)
(iii) Let M be finite.
(a) Show that ${ }_{k} \mathcal{M}(k M, k)$ becomes a k-coalgebra with comultiplication given by the composition of

$$
{ }_{k} \mathcal{M}(k M, k) \xrightarrow{k \mathcal{M}(\mathrm{~m}, k)}{ }_{k} \mathcal{M}\left(k M \otimes_{k} k M, k\right),
$$

with the inverse of (1) and with counit given by

$$
{ }_{k} \mathcal{M}(k M, k) \xrightarrow{k \mathcal{M}(\eta, k)}{ }_{k} \mathcal{M}(k, k) \xrightarrow{\sim} k .
$$

(b) Show that ${ }_{k} \mathcal{M}(k M, k)$ (with the coalgebra structure from (iii)a) is isomorphic to k^{M} as k-coalgebra.
(c) Show that M is a group if and only if $k \mathcal{M}(k M, k) \cong k^{M}$ is a k-Hopf algebra.
(d) Show that M is commutative if and only if k^{M} is cocommutative.

Exercise 4.

Let k be a field and H and H^{\prime} be k-Hopf algebras with antipodes S and S^{\prime}, respectively. Then every morphism $f: H \rightarrow H^{\prime}$ of k-bialgebras preserves the antipodes, i.e. we have

$$
S^{\prime} \circ f=f \circ S
$$

Exercise 5.

Let k be a commutative ring and $(B, \mathrm{~m}, \eta, \Delta, \varepsilon)$ be a bialgebra. Show that an antipode for B is unique if it exists.

