Reconstruction Theorems in Category Theory - Exercise Sheet 2

University of Siegen Dr. Florian Heiderich Fall Term 2016/2017Due on November 17, 2016

Exercise 1.

Let R, S and T be rings, $(E_i)_{i \in I}$ be a family of (R, S)-bimodules and $(F_j)_{j \in J}$ be a family of (S, T)-bimodules.

(i) Show that there is a morphism of (R, T)-bimodules

$$f: (\prod_{i \in I} E_i) \otimes_S (\prod_{j \in J} F_j) \to \prod_{(i,j) \in I \times J} (E_i \otimes_S F_j).$$

such that $f((e_i)_{i \in I} \otimes (f_j)_{j \in J}) = (e_i \otimes f_j)_{(i,j) \in I \times J}$.

(ii) Show that there is an isomorphism of (R, T)-bimodules

$$g\colon (\bigoplus_{i\in I} E_i)\otimes_S (\bigoplus_{j\in J} F_j) \to \bigoplus_{(i,j)\in I\times J} (E_i\otimes_S F_j).$$

such that $g((\sum_{i \in I} e_i) \otimes (\sum_{j \in J} f_j)) = \sum_{(i,j) \in I \times J} (e_i \otimes f_j).$

- (iii) Let k be a commutative ring, E a k-module and F a free k-module with basis $(b_j)_{j\in J}$. Show that $E \otimes_k F$ is isomorphic to $E^{(J)}$ as k-module and that every element of $E \otimes_k F$ can be uniquely written as $\sum_{j\in J} e_j \otimes b_j$, where $(e_j)_{j\in J}$ is a family of elements in E, only finitely many of them not being equal to 0.
- (iv) Let k be a commutative ring and let E and F be free k-modules with bases $(a_i)_{i \in I}$ and $(b_j)_{j \in J}$, respectively. Show that $E \otimes_k F$ is a free k-module with basis $(a_i \otimes b_j)_{(i,j) \in I \times J}$.
- (v) (*) Show that the morphism f in (i) is in general neither injective nor surjective.

Exercise 2.

Let $C \coloneqq \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ and $D \coloneqq \mathbb{Z} \oplus 2\mathbb{Z}/4\mathbb{Z}$.

(i) Show that C is a \mathbb{Z} -coalgebra with respect to the comultiplication Δ and counit ε given by the morphisms of \mathbb{Z} -modules $\Delta \colon C \to C \otimes_{\mathbb{Z}} C$ and $\varepsilon \colon C \to \mathbb{Z}$ defined by

$$\begin{array}{ll} \Delta((1,0)) \coloneqq (1,0) \otimes (1,0) & \Delta((0,1)) \coloneqq (1,0) \otimes (0,1) + (0,1) \otimes (1,0) \\ \varepsilon((1,0)) \coloneqq 1 & \varepsilon((0,1)) \coloneqq 0. \end{array}$$

(ii) Show that D becomes a \mathbb{Z} -coalgebra with respect to comultiplication Δ_1 and counit ε_1 given by the morphisms of \mathbb{Z} -modules $\Delta_1: D \to D \otimes_{\mathbb{Z}} D$ and $\varepsilon_1: D \to \mathbb{Z}$ defined by

$$\begin{aligned} \Delta_1((1,0)) &\coloneqq (1,0) \otimes (1,0) \\ \varepsilon_1((1,0)) &\coloneqq 1 \end{aligned} \qquad \Delta_1((0,2)) &\coloneqq (1,0) \otimes (0,2) + (0,2) \otimes (1,0) \\ \varepsilon_1((0,2)) &\coloneqq 0. \end{aligned}$$

(iii) Show that D becomes a \mathbb{Z} -coalgebra with respect to comultiplication Δ_2 and counit ε_2 given by the morphisms of \mathbb{Z} -modules $\Delta_2 \colon D \to D \otimes_{\mathbb{Z}} D$ and $\varepsilon_2 \colon D \to \mathbb{Z}$ defined by

$$\begin{aligned} \Delta_2((1,0)) &\coloneqq (1,0) \otimes (1,0) \quad \Delta_2((0,2)) &\coloneqq (1,0) \otimes (0,2) + (0,2) \otimes (0,2) + (0,2) \otimes (1,0) \\ \varepsilon_2((1,0)) &\coloneqq 1 \qquad \qquad \varepsilon_2((0,2)) &\coloneqq 0. \end{aligned}$$

- (iv) Show that the natural inclusion of D in C is a morphism of \mathbb{Z} -coalgebras from $(D, \Delta_1, \varepsilon_1)$ to (C, Δ, ε) and also from $(D, \Delta_2, \varepsilon_2)$ to (C, Δ, ε) .
- (v) Show that $(D, \Delta_1, \varepsilon_1)$ and $(D, \Delta_2, \varepsilon_2)$ are not isomorphic as \mathbb{Z} -coalgebras.

Exercise 3.

Let k be a field and M be a monoid.

(i) Show that the morphism

$${}_{k}\mathcal{M}(kM,k) \otimes_{k} {}_{k}\mathcal{M}(kM,k) \to {}_{k}\mathcal{M}(kM \otimes_{k} kM,k), \quad f \otimes g \mapsto (c \otimes c' \mapsto f(c)g(c'))$$
(1)

is an isomorphism if and only if M is finite.

(ii) Show that there is an isomorphism of k-algebras

$$_k\mathcal{M}(kM,k)\cong k^M,$$

where k^M is the k-algebra of functions on M, kM is the grouplike coalgebra with basis M and $_k\mathcal{M}(kM,k)$ is the convolution algebra. (The algebra structure on $_k\mathcal{M}(kM,k)$ is given by

$$_{k}\mathcal{M}(kM,k)\otimes_{k}\mathcal{M}(kM,k)\xrightarrow{(1)}{}_{k}\mathcal{M}(kM\otimes_{k}kM,k)\xrightarrow{_{k}\mathcal{M}(\Delta,k)}{}_{k}\mathcal{M}(kM,k)$$

as multiplication and

$$k \xrightarrow{\sim} {}_k \mathcal{M}(k,k) \xrightarrow{{}_k \mathcal{M}(\varepsilon,k)} {}_k \mathcal{M}(kM,k)$$

as unit.)

- (iii) Let M be finite.
 - (a) Show that ${}_{k}\mathcal{M}(kM,k)$ becomes a k-coalgebra with comultiplication given by the composition of

$$_{k}\mathcal{M}(kM,k) \xrightarrow{_{k}\mathcal{M}(\mathbf{m},\kappa)} _{k}\mathcal{M}(kM \otimes_{k} kM,k),$$

with the inverse of (1) and with counit given by

$$_{k}\mathcal{M}(kM,k) \xrightarrow{_{k}\mathcal{M}(\eta,k)} _{k}\mathcal{M}(k,k) \xrightarrow{\sim} k.$$

- (b) Show that ${}_{k}\mathcal{M}(kM,k)$ (with the coalgebra structure from (iii)a) is isomorphic to k^{M} as k-coalgebra.
- (c) Show that M is a group if and only if ${}_{k}\mathcal{M}(kM,k) \cong k^{M}$ is a k-Hopf algebra.
- (d) Show that M is commutative if and only if k^M is cocommutative.

Exercise 4.

Let k be a field and H and H' be k-Hopf algebras with antipodes S and S', respectively. Then every morphism $f: H \to H'$ of k-bialgebras preserves the antipodes, i.e. we have

$$S' \circ f = f \circ S.$$

Exercise 5.

Let k be a commutative ring and $(B, m, \eta, \Delta, \varepsilon)$ be a bialgebra. Show that an antipode for B is unique if it exists.