Reconstruction Theorems in Category Theory - Exercise Sheet 3

University of Siegen
Dr. Florian Heiderich

Fall Term 2016/2017
Due on December 1, 2016

Exercise 1.

Let k be a field, C be a k-coalgebra and V be a k-module. Let further $\left(e_{i}\right)_{i \in I}$ be a k-basis of V.
(i) Let $\rho: V \rightarrow V \otimes_{k} C$ be a morphism of k-modules and let $c_{i j} \in C$ be defined by

$$
\rho\left(e_{j}\right)=\sum_{i \in I} e_{i} \otimes c_{i j} .
$$

Then ρ is a right C-comodule structure on V if and only if

$$
\Delta\left(c_{i j}\right)=\sum_{k \in I} c_{i k} \otimes c_{k j} \quad \text { and } \quad \varepsilon\left(c_{i j}\right)=\delta_{i j}
$$

for all $i, j \in I$.
(ii) Let $\lambda: V \rightarrow C \otimes_{k} V$ be a morphism of k-modules and let $c_{i j} \in C$ be defined by

$$
\lambda\left(e_{i}\right)=\sum_{j \in I}^{n} c_{i j} \otimes e_{j} .
$$

Then λ is a left C-comodule structure on V if and only if

$$
\Delta\left(c_{i j}\right)=\sum_{k \in I} c_{i k} \otimes c_{k j} \quad \text { and } \quad \varepsilon\left(c_{i j}\right)=\delta_{i j} .
$$

for all $i, j \in I$.

Exercise 2.

Let k be a field. Let further V be a finite dimensional k-module and C be a k-coalgebra. Then under the isomorphisms

$$
{ }_{k} \mathcal{M}\left(V, V \otimes_{k} C\right) \cong{ }_{k} \mathcal{M}\left(V \otimes_{k}{ }^{*} V, C\right) \cong{ }_{k} \mathcal{M}\left({ }^{*} V, C \otimes_{k}{ }^{*} V\right)
$$

right C-comodule structures $\rho: V \rightarrow V \otimes_{k} C$ on V are in 1-1 correspondence with left C comodule structures $\lambda:{ }^{*} V \rightarrow C \otimes_{k}{ }^{*} V$ on ${ }^{*} V$.

Exercise 3.

Let k be a commutative ring and A be a k-bialgebra. Then the category of left A-modules is monoidal with the tensor product of two left A-modules M and N defined as $M \otimes_{k} N$ with the left A-module structure given by

$$
\begin{equation*}
a(m \otimes n):=\sum_{(a)}\left(a_{(1)} m\right) \otimes\left(a_{(2)} n\right) . \tag{1}
\end{equation*}
$$

and unit object k with A-module structure induced by $a \lambda:=\varepsilon(a) \lambda$ for all $a \in A$ and $\lambda \in k$. Denote this monoidal category by ${ }_{A / k} \mathcal{M}$. The forgetful functor $\omega:{ }_{A / k} \mathcal{M} \rightarrow{ }_{k} \mathcal{M}$ to the category of left k-modules ${ }_{k} \mathcal{M}$ is a monoidal functor.

Exercise 4.

(i) For any monoidal category (C, \otimes, I) there is a monoidal category $\left(\mathrm{C}^{r e v}, \otimes^{\text {rev }}, I\right)$, called the reverse of C. The underlying category $C^{r e v}$ is C and the tensor product of two objects $X \otimes^{r e v} Y$ is defined as the tensor product $Y \otimes X$ in C. The associativity constraint

$$
a_{X, Y, Z}^{r e v}:\left(X \otimes^{r e v} Y\right) \otimes^{r e v} Z \rightarrow X \otimes^{r e v}\left(Y \otimes^{r e v} Z\right)
$$

in $\left(\mathrm{C}^{r e v}, \otimes^{r e v}, I\right)$ is defined as the inverse

$$
a_{Z, Y, X}^{-1}: Z \otimes(Y \otimes X) \rightarrow(Z \otimes Y) \otimes X
$$

of the associativity constraint $a_{Z, Y, X}$ of (C, \otimes, I). The left unit constraint $l_{X}^{\text {rev }}: I \otimes^{\text {rev }} X \rightarrow$ X in $\mathrm{C}^{r e v}$ is defined as the right unit constraint $r_{X}: X \otimes I \rightarrow X$ in C and the right unit constraint $r_{X}^{r e v}: X \otimes^{r e v} I \rightarrow X$ in $C^{r e v}$ as the left unit constraint $l_{X}: I \otimes X \rightarrow X$ in C .
(ii) If (C, \otimes, I) is braided, then the identity functor $F:=\mathrm{id}_{\mathrm{C}}: \mathrm{C} \rightarrow \mathrm{C}^{\text {rev }}$ becomes a monoidal functor with respect to $\phi_{X, Y}:=\Psi_{Y, X}$ for all objects X and Y of C.

and the isomorphism

$$
\phi_{0}: I \rightarrow I
$$

being the identity on I. Moreover the category $C^{r e v}$ is braided with respect to

$$
\begin{equation*}
\Psi_{X, Y}^{r e v}: X \otimes^{r e v} Y \rightarrow Y \otimes^{r e v} X \tag{2}
\end{equation*}
$$

being the unique isomorphism that makes the diagram

$$
\begin{gathered}
X \otimes^{r e v} Y \xrightarrow{\Psi_{X, Y}^{r e v}} Y \otimes^{r e v} X \\
\| \\
Y \otimes X \xrightarrow{\Psi_{Y, X}} X \otimes Y
\end{gathered}
$$

commutative. Then the monoidal functor $F=\mathrm{id}: C \rightarrow \mathrm{C}^{r e v}$ is a braided monoidal functor.

