Reconstruction Theorems in Category Theory - Exercise Sheet 4

University of Siegen Dr. Florian Heiderich Fall Term 2016/2017 Due on December 15, 2016

Exercise 1.

Let k be a field and M be a monoid. Consider the category of M-graded vector spaces that has as objects the k-vector spaces V with decomposition $V = \bigoplus_{m \in M} V_m$ and as morphisms the k-linear morphisms that preserve the grading.

- (i) Show that this category is monoidal, the tensor product of $V = \bigoplus_m V_m$ and $W = \bigoplus_m W_m$ being defined as $V \otimes_k W = \bigoplus_{m \in M} (\bigoplus_{m_1m_2=m} V_{m_1} \otimes_k W_{m_2})$ and unit object I := k, which is *M*-graded via $I_1 = k$ and $I_m = 0$ for all $1 \neq m \in M$.
- (ii) Show that this monoidal category is monoidally equivalent to the monoidal category \mathcal{M}^{kM} of right kM-comodules over the monoid bialgebra kM.

Exercise 2.

Let $\mathbb{C}C_n$ be the group algebra of the cyclic group C_n of order n over the complex numbers \mathbb{C} and let g be a generator for C_n . The \mathbb{C} -algebra $\mathbb{C}C_n$ becomes a \mathbb{C} -bialgebra with respect to comultiplication Δ and counit ε defined by $\Delta(g^a) = g^a \otimes g^a$ and $\varepsilon(g^a) = 1$ for all $a = 0, \ldots, n-1$.

- (i) Show that the monoidal category CCn/CM of left CCn-modules over C is equivalent to the monoidal category of Cn-graded C-vector spaces (see exercise 1).
 Hint: A left CCn-module V is a Cn-graded C-vector space V = ⊕ⁿ⁻¹_{a=0}V_a with V_a := {v ∈ V | gv = e^{2πia}/_nv} for a = 0,...,n-1.
- (ii) Show that besides $R = 1 \otimes 1$ also $R = n^{-1} \sum_{a,b=0}^{n-1} e^{\frac{-2\pi i a b}{n}} g^a \otimes g^b$ is a quasitriangular structure on $\mathbb{C}C_n$.
- (iii) Show that the braiding corresponding to $R = n^{-1} \sum_{a,b=0}^{n-1} e^{\frac{-2\pi i a b}{n}} g^a \otimes g^b$ on the monoidal category $\mathbb{C}_{C_n/\mathbb{C}}\mathcal{M}$ of left \mathbb{C}_n -modules over \mathbb{C} is given by $\Psi_{V,W}(v \otimes w) = e^{\frac{2\pi i |v| |w|}{n}} w \otimes v$ for homogeneous elements $v \in V$ and $w \in W$ of degree |v| and |w|, respectively.
- (iv) Show that the induced braided monoidal category is symmetric if and only if n = 1 or n = 2.¹

Exercise 3.

Let k be a commutative ring and let (A, R) be a quasitriangular bialgebra over k. Show that $(\varepsilon \otimes id)(R) = (id \otimes \varepsilon)(R) = 1$ and that $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$.

Exercise 4.

Let k be a field and (A, \mathcal{R}) be a dual quasitriangular bialgebra over k. Show that $\mathcal{R}(a \otimes 1) = \varepsilon(a) = \mathcal{R}(1 \otimes a)$ for all $a \in A$ and that

$$\sum_{(a),(b),(c)} \mathcal{R}(a_{(1)} \otimes b_{(1)}) \mathcal{R}(a_{(2)} \otimes c_{(1)}) \mathcal{R}(b_{(2)} \otimes c_{(2)}) = \sum_{(a),(b),(c)} \mathcal{R}(b_{(1)} \otimes c_{(1)}) \mathcal{R}(a_{(1)} \otimes c_{(2)}) \mathcal{R}(a_{(2)} \otimes b_{(2)}).$$

¹In case n = 1 this is the symmetric monoidal category of C-vector spaces with the usual twist morphism. In case n = 2 this is the symmetric monoidal category of supervector spaces.