Reconstruction Theorems in Category Theory - Exercise Sheet 4

University of Siegen

Dr. Florian Heiderich

Fall Term 2016/2017
Due on December 15, 2016

Exercise 1.

Let k be a field and M be a monoid. Consider the category of M-graded vector spaces that has as objects the k-vector spaces V with decomposition $V=\oplus_{m \in M} V_{m}$ and as morphisms the k-linear morphisms that preserve the grading.
(i) Show that this category is monoidal, the tensor product of $V=\oplus_{m} V_{m}$ and $W=\oplus_{m} W_{m}$ being defined as $V \otimes_{k} W=\oplus_{m \in M}\left(\oplus_{m_{1} m_{2}=m} V_{m_{1}} \otimes_{k} W_{m_{2}}\right)$ and unit object $I:=k$, which is M-graded via $I_{1}=k$ and $I_{m}=0$ for all $1 \neq m \in M$.
(ii) Show that this monoidal category is monoidally equivalent to the monoidal category $\mathcal{M}^{k M}$ of right $k M$-comodules over the monoid bialgebra $k M$.

Exercise 2.

Let $\mathbb{C} C_{n}$ be the group algebra of the cyclic group C_{n} of order n over the complex numbers \mathbb{C} and let g be a generator for C_{n}. The \mathbb{C}-algebra $\mathbb{C} C_{n}$ becomes a \mathbb{C}-bialgebra with respect to comultiplication Δ and counit ε defined by $\Delta\left(g^{a}\right)=g^{a} \otimes g^{a}$ and $\varepsilon\left(g^{a}\right)=1$ for all $a=$ $0, \ldots, n-1$.
(i) Show that the monoidal category $\mathbb{C}_{n} / \mathbb{C} \mathcal{M}$ of left $\mathbb{C} C_{n}$-modules over \mathbb{C} is equivalent to the monoidal category of C_{n}-graded \mathbb{C}-vector spaces (see exercise 1).
Hint: A left $\mathbb{C} C_{n}$-module V is a C_{n}-graded \mathbb{C}-vector space $V=\oplus_{a=0}^{n-1} V_{a}$ with $V_{a}:=\{v \in$ $\left.V \left\lvert\, g v=e^{\frac{2 \pi i a}{n}} v\right.\right\}$ for $a=0, \ldots, n-1$.
(ii) Show that besides $R=1 \otimes 1$ also $R=n^{-1} \sum_{a, b=0}^{n-1} e^{\frac{-2 \pi i a b}{n}} g^{a} \otimes g^{b}$ is a quasitriangular structure on $\mathbb{C} C_{n}$.
(iii) Show that the braiding corresponding to $R=n^{-1} \sum_{a, b=0}^{n-1} e^{\frac{-2 \pi i a b}{n}} g^{a} \otimes g^{b}$ on the monoidal category ${\mathbb{C} C_{n} / \mathbb{C}}^{\mathcal{M}}$ of left $\mathbb{C} C_{n}$-modules over \mathbb{C} is given by $\Psi_{V, W}(v \otimes w)=e^{\frac{2 \pi i|v||\omega|}{n}} w \otimes v$ for homogeneous elements $v \in V$ and $w \in W$ of degree $|v|$ and $|w|$, respectively.
(iv) Show that the induced braided monoidal category is symmetric if and only if $n=1$ or $n=2$. 『

Exercise 3.

Let k be a commutative ring and let (A, R) be a quasitriangular bialgebra over k. Show that $(\varepsilon \otimes \mathrm{id})(R)=(\mathrm{id} \otimes \varepsilon)(R)=1$ and that $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$.

Exercise 4.

Let k be a field and (A, \mathcal{R}) be a dual quasitriangular bialgebra over k. Show that $\mathcal{R}(a \otimes 1)=$ $\varepsilon(a)=\mathcal{R}(1 \otimes a)$ for all $a \in A$ and that
$\sum_{(a),(b),(c)} \mathcal{R}\left(a_{(1)} \otimes b_{(1)}\right) \mathcal{R}\left(a_{(2)} \otimes c_{(1)}\right) \mathcal{R}\left(b_{(2)} \otimes c_{(2)}\right)=\sum_{(a),(b),(c)} \mathcal{R}\left(b_{(1)} \otimes c_{(1)}\right) \mathcal{R}\left(a_{(1)} \otimes c_{(2)}\right) \mathcal{R}\left(a_{(2)} \otimes b_{(2)}\right)$.

[^0]
[^0]: ${ }^{1}$ In case $n=1$ this is the symmetric monoidal category of \mathbb{C}-vector spaces with the usual twist morphism. In case $n=2$ this is the symmetric monoidal category of supervector spaces.

