Reconstruction Theorems in Category Theory - Exercise Sheet 5

University of Siegen
Dr. Florian Heiderich

Fall Term 2016/2017
Due on January 12, 2017

Exercise 1.

Let (C, \otimes, I) be a strict monoidal category and let $\varepsilon: A \otimes B \rightarrow I$ be a pairing between objects A and B of C . Show that ε is exact if and only if

$$
\mathrm{C}(X, Y \otimes A) \rightarrow \mathrm{C}(X \otimes B, Y), g \mapsto\left(\operatorname{id}_{Y} \otimes \varepsilon\right) \circ\left(g \otimes \operatorname{id}_{B}\right)=: f_{g} .
$$

is a bijection for all objects X and Y of C , i.e. the functor $-\otimes B: \mathrm{C} \rightarrow \mathrm{C}$ is left adjoint to $-\otimes A: C \rightarrow C$.

Exercise 2.

Let k be a field and G be a group. Show that the monoidal category ${ }_{k G / k} \mathfrak{m}$ of left $k G$-modules of finite dimension over k is left rigid.

Exercise 3.

Let k be a field and $\left(A, \mathrm{~m}_{A}, \eta_{A}\right)$ be a k-algebra. Let C be the category with objects the pairs $\left(V, \rho_{V}\right)$ consisting of a finite dimensional k-vector space V and a morphism $\rho_{V}: V \rightarrow V \otimes_{k} A$ and morphisms from $\left(V, \rho_{V}\right)$ to $\left(W, \rho_{W}\right)$ the homomorphisms of k-vector spaces $f: V \rightarrow W$ such that $\rho_{W} \circ f=\left(f \otimes \mathrm{id}_{A}\right) \circ \rho_{V}$.
(i) Show that C is monoidal with the tensor product of $\left(V, \rho_{V}\right)$ and $\left(W, \rho_{W}\right)$ defined as $V \otimes_{k} W$ together with $V \otimes_{k} W \rightarrow V \otimes_{k} W \otimes_{k} A$ given by the composition
$V \otimes_{k} W \xrightarrow{\rho_{V} \otimes \rho_{W}} V \otimes_{k} A \otimes_{k} W \otimes_{k} A \xrightarrow{\mathrm{id}_{V} \otimes \tau \otimes \mathrm{id}_{W}} V \otimes_{k} W \otimes_{k} A \otimes_{k} A \xrightarrow{\mathrm{id}_{V} \otimes \mathrm{id}_{W} \otimes \mathrm{~m}_{A}} V \otimes_{k} W \otimes_{k} A$ and unit $\left(k, \eta_{A}\right)$.
(ii) Show that the functor $F: \mathrm{C} \rightarrow{ }_{k} \mathcal{M},\left(V, \rho_{V}\right) \mapsto V$ is monoidal.
(iii) Let $\left(V, \rho_{V}\right)$ be an object of $\mathrm{C},\left\{e_{1}, \ldots, e_{n}\right\}$ be a k-basis of $V, \rho_{V}\left(e_{i}\right)=\sum_{j} e_{j} \otimes a_{j i}$, (W, ρ_{W}) be another object, $\left\{f_{1}, \ldots f_{n}\right\}$ be a k-basis of W and $\rho_{W}\left(f_{i}\right)=\sum_{j} f_{j} \otimes b_{j i}$ such that the morphisms of k-vector spaces $\varepsilon: V \otimes_{k} W \rightarrow k, e_{i} \otimes f_{j} \mapsto \delta_{i, j}$ and $\eta: k \rightarrow W \otimes_{k} V$ make W into a right dual of V in the category of k-vector spaces.
Show that with $\alpha:=\left(a_{i j}\right)_{i, j}$ and $\beta:=\left(b_{i j}\right)_{i, j}$
(a) $\left(W, \rho_{W}\right)$ is a right dual of $\left(V, \rho_{V}\right)$ if and only if $\left({ }^{t} \alpha\right) \beta=1=\beta\left({ }^{t} \alpha\right)$, i.e. if and only if $\beta=\left({ }^{t} \alpha\right)^{-1}$ and
(b) $\left(W, \rho_{W}\right)$ is a left dual of $\left(V, \rho_{V}\right)$ if and only if $\left({ }^{t} \beta\right) \alpha=1=\alpha\left({ }^{t} \beta\right)$, i.e. if and only if $\beta={ }^{t}\left(\alpha^{-1}\right)$.
where ${ }^{t} \alpha$ and ${ }^{t} \beta$ denote the transposes of the matrices α and β.
(iv) Define $\alpha^{(0)}:=\alpha, \alpha^{(n+1)}:={ }^{t}\left(\left(\alpha^{(n)}\right)^{-1}\right)$ for $n \geq 0$ and $\alpha^{(n-1)}:=\left({ }^{t}\left(\alpha^{(n)}\right)\right)^{-1}$ for $n \leq 0$ (if they exist). Call α totally invertible if $\alpha^{(n)}$ exists for all $n \in \mathbb{Z}$. Show that the full subcategory of C consisting of those $\left(V, \rho_{V}\right)$ with $\rho_{V}\left(e_{i}\right)=\sum_{j} e_{j} \otimes a_{j i}$ with $\alpha=\left(a_{i j}\right)_{i, j}$ totally invertible is autonomous.
(v) Show that left duals and right duals in C coincide if A is commutative.
(vi) Give an example of a k-algebra A and an object (V, ρ_{V}) in C that has a left dual but no right dual.

