Reconstruction Theorems in Category Theory - Exercise Sheet 7

University of Siegen Dr. Florian Heiderich Fall Term 2016/2017 Due on February 9, 2017

Exercise 1.

Let k be a field.

- (i) Show that if C is a k-coalgebra, then $C := {}_k \mathcal{M}(C, k)$ is a k-algebra.
- (ii) Let $C := k[x] = \bigoplus_{i \in \mathbb{N}} kx^i$ be the free k-module with basis $\{1, x, x^2, ...\}$, considered as k-coalgebra with respect to the comultiplication Δ induced by

$$\Delta(x^n) = \sum_{k=0}^n \binom{n}{k} x^k \otimes x^{n-k}$$

and counit ε induced by

$$\varepsilon(x^n) = \delta_{n,0}.$$

Determine the k-algebra C.

- (iii) Show that if A is a finite dimensional k-algebra, then $A \coloneqq {}_k\mathcal{M}(A,k)$ is a k-coalgebra.
- (iv) Let FAlg_k be the category of finite-dimensional k-algebras and FCoAlg_k be the category of finite-dimensional k-coalgebras. Show that the functor from FCoAlg_k to FAlg_k that sends a finite-dimensional k-coalgebra (C, Δ, ε) to the k-algebra $C := {}_k\mathcal{M}(C, k)$ (see (i)) is an anti-equivalence of categories.
- (v) Let C be a k-coalgebra. Show that a left (resp. right) C-comodule M is a left (resp. right) C-module. Show that the converse holds if C is finite dimensional over k.
- (vi) Let C be a k-coalgebra.
 - (a) Show that \mathcal{M}^C is a full subcategory of ${}^{-}_{C}\mathcal{M}$.
 - (b) Show that \mathcal{M}^C is equivalent to ${}^{-}_{C}\mathcal{M}$ if C is of finite dimension over k.
 - (c) Provide an example of a k-coalgebra C such that \mathcal{M}^C and ${}_C\mathcal{M}$ are not equivalent.

Exercise 2.

Let $(\mathsf{C}, \otimes, I, \Psi)$ be a rigid symmetric monoidal category. For an endomorphism f of an object X of C , we define the *trace* of f as the endomorphism of I that is given by

$$\operatorname{Tr}(f) \coloneqq \varepsilon_X \circ \Psi_{X, {}^{\mathsf{r}}X} \circ (f \otimes \operatorname{id}_{{}^{\mathsf{r}}X}) \circ \eta_X.$$

(i) Show that $\operatorname{Tr}(f \circ g) = \operatorname{Tr}(g \circ f)$ for morphisms $f: X \to Y$ and $g: Y \to X$ in C.

(ii) Show that $\operatorname{Tr}(f_1 \otimes f_2) = \operatorname{Tr}(f_1) \circ \operatorname{Tr}(f_2) = \operatorname{Tr}(f_2) \circ \operatorname{Tr}(f_1)$ for morphisms $f_1 \colon X_1 \to X_1$ and $f_2 \colon X_2 \to X_2$ in C.