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Abstract. Given a coalgebraD, a commutative algebra A, a commutative A-algebra B and a measuring ψ : D⊗A→
B, we define an algebra ΩD

B/(A,ψ)
that generalizes the symmetric algebra over the module of Kähler differentials

SymB(Ω1
B/A

). We show that the spectrum of ΩD
B/(A,ψ)

is isomorphic to a prolongation space as defined by Moosa

and Scanlon, providing a direct construction of the latter. These prolongation spaces generalize those of Gillet,

Rosen and Vojta. The universal prolongations of differential and difference kernels can also be recovered from our

generalized differentials. When D is moreover a bialgebra, our generalized differentials provide a unified approach
to the prolongations of commutative rings, unifying the well-known constructions in the differential and difference

case.

Introduction

The literature contains several definitions of prolongations spaces. Most of them generalize the tangent bundle.
Recently, a rather general definition of prolongation spaces was introduced by Moosa and Scanlon (cf. [MS10],
[MS11]). While these prolongation spaces are defined in terms of Weil restrictions, we provide a direct construction
in the case of affine schemes and show that they generalize the prolongation spaces defined previously by Buium,
Rosen and Vojta (cf. [Bui93], [Ros08] and [Voj07]). As the tangent bundle can be defined in terms of the Kähler
differentials, one can construct the prolongation spaces of Buium, Vojta and Rosen using algebras of (higher)
differentials. We propose a definition of generalized differentials that unifies Kähler differentials as well as the
divided differentials defined by Vojta and the higher differentials as defined by Rosen. The spectra of our generalized
differentials realize the prolongation spaces due to Moosa and Scanlon in the case of affine schemes.

Let f : A→ B be a commutative A-algebra. Recall that the Kähler differentials Ω1
B/A of B over A together with

d: B → Ω1
B/A have the universal property that for every B-module M and every A-derivation ∂ : B → M there

exists a unique morphism of B-modules φ : Ω1
B/A →M such that ∂ = φ ◦ d, giving rise to a bijection

DerA(B,M) ∼= BM(Ω1
B/A,M),

where BM(Ω1
B/A,M) denotes the homomorphisms of B-modules from Ω1

B/A to M . If g : B → R is a commutative

B-algebra, then this bijection induces a bijection

DerA(B,R) ∼= AlgB(SymB(Ω1
B/A), R),(0.1)

where AlgB(SymB(Ω1
B/A), R) denotes the homomorphisms of B-algebras from SymB(Ω1

B/A) to R. If δA : A → A

is a derivation on A, the derivation d: B → SymB(Ω1
B/Z) induces a derivation d: B → SymB(Ω1

B/Z)/IδA , where

IδA is the ideal of SymB(Ω1
B/Z) generated by d f(a) − f(δA(a)) for all a ∈ A, and the bijection (0.1) restricts to a

bijection

{∂ ∈ DerA(B,R) | ∂ ◦ f = g ◦ f ◦ δA} ∼= AlgB(SymB(Ω1
B/Z)/IδA , R).(0.2)

In positive characteristic, higher derivations are often more suitable than classical derivations. Vojta and Rosen
introduce differentials for higher derivations and generalize the bijections (0.1) and (0.2), respectively: Vojta defines
for every m ∈ N a B-algebra HSmB/A such that for every commutative A-algebra R there is a bijection

AlgA(HSmB/A, R) ∼= AlgA(B,R[t]/(tm+1)),(0.3)
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the set at the right hand side describing higher derivations of length m from B to R over A, cf. [Voj07]. Given a

higher differential ring (A, δA = (δ
(i)
A )i∈N) and a commutative A-algebra B, Rosen defines a B-algebra HSmB/(A,δA)

so that there is a bijection

AlgA(HSmB/(A,δA), R) ∼= AlgA(B,R[t]/(tm+1)),(0.4)

where theA-algebra structure onR[t]/(tm+1) is induced by the homomorphism θ : A→ A[t]/(tm+1), a 7→
∑m
i=0 δ

(i)
A (a)ti,

cf. [Ros08]. Rosen’s approach is the most general one of the aforementioned, specializing to the others as indicated
by the arrows in the diagram

HSmB/A (Vojta)

SymB(Ω1
B/A) = HS1

B/A

HSmB/(A,δA) (Rosen)

HS1
B/(A,δA) = SymB(Ω1

B/Z)/I
δ
(1)
A

.

m = 1Remark 1.8

δA trivial

Remark 1.16 (1)

δ
(1)
A trivial

m = 1 and δ
(0)
A = idARemark 1.16 (2)

These objects share the property of being universal objects for certain classes of (higher) derivations.
Note that a derivation on a commutative ring A can be equivalently defined as a homomorphism of rings

ρ : A → A[t]/(t2) such that ev0 ◦ρ = idA, where ev0 : A[t]/(t2) → A is the homomorphism of A-algebras defined

by ev0(t) = 0. Similarly, (unital) higher derivations (δ
(i)
A )i=0,...,m on A can be defined as a homomorphism of

rings ρ : A → A[t]/(tm+1) such that ev0 ◦ρ = idA. The definition of prolongation spaces Moosa and Scanlon is in
terms of commutative E-rings, where E is a finite free S-algebra scheme over a commutative ring k. A commutative
E-ring is a commutative ring A together with a homomorphism of k-algebras e : A→ E(A). This generalizes higher
derivations, E(A) replacing A[t]/(tm+1). In this article we mainly use D-measurings, where D is a coalgebras,
instead of E-rings. This is equivalent to their framework as shown in [Hei13b]: Given a finite free S-algebra
scheme E over k, we define D := E(k)∗. The S-algebra structure on E induces a k-coalgebra structure on D and
commutative E-rings e : A→ E(A) are equivalent to D-measurings ψ : D⊗k A→ A from A to itself. The k-algebra
E(A) is isomorphic to the set kM(D,A) of homomorphisms of k-modules from D to A, which becomes a k-algebra
thanks to the k-coalgebra structure on D. A D-measuring ψ : D ⊗k A → A is equivalent to a homomorphism of
k-algebras ρ : A → kM(D,A) and the isomorphism E(A) ∼= kM(D,A) allows to pass from E-ring structures on A
to D-measurings and vice versa.

More generally, given a commutative k-algebra A, a D-measuring ψA : D ⊗k A → A, and two commutative
A-algebras B and R, we can consider homomorphisms of A-algebras P : B → kM(D,R), a notion generalizing
higher derivations form B to R over A. For our generalized differentials ΩDB/(A,ψA) there is a homomorphism of

A-algebras ρu : B → kM(D,ΩDB/A) such that for every homomorphism of A-algebras B → kM(D,R) there is a

unique homomorphism of A-algebras φ : ΩDB/(A,ψA) → R such that P = φ ◦ ρu, giving rise to a bijection

AlgA(B, kM(D,R)) ∼= AlgA(ΩDB/(A,ψA), R), P 7→ φ

that generalizes (0.3) and (0.4), cf. proposition 3.2.
From our generalized differentials we also recover universal prolongations of differential kernels due to Johnson

(cf. [Joh82], [Joh85]) and difference kernels (cf. [Wib12], [Wib13]).
The forgetful functor from the category of commutative differential algebras over a given commutative differential

ring (A, δA) to the category of commutative A-algebras has a left adjoint, as shown by Gillet, cf. [Gil02]. A similar
result for commutative unital iterative differential algebras is due to Rosen: The forgetful functor from the category
of commutative unital iterative differential algebras over a given commutative unital iterative differential ring (A, δA)
to the category of commutative (A, δA)-algebras (i.e. the category commutative algebras f : A→ B such that Ker f
is an δA-ideal) has a left adjoint. Similarly, the forgetful functor from the category of commutative difference
algebras over a given commutative difference field (A, σA) to the category of commutative A-algebras has a left
adjoint, as shown by Wibmer, cf. [Wib13]. If the above mentioned k-coalgebra D is a k-bialgebra and A is a
commutative D-module algebra, we use our generalized differentials again to unify and generalize these results (cf.
proposition 3.9).
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The simplest kind of a prolongation space is the tangent bundle. In the case of an affine scheme X = SpecB
over Y = SpecA, the tangent bundle of X over Y is TX/Y := Spec SymB(Ω1

B/A). Vojta defines, given a morphism

of schemes X → Y , the scheme of m-jet differentials Jm(X/Y ) of X over Y , such that for every Y -scheme Z there
is an isomorphism

SchY (Z ×Z Z[t]/(tm+1), X) ∼= SchY (Z, Jm(X/Y ).

Buium defines, given a derivation δA : A → A on a commutative ring A and scheme X over Y = SpecA, an
A-scheme jetm(X/Y, δA) such that for every A-scheme Z there is a bijection

SchA(Z ×A A[t]/(tm+1), X)
∼−→ SchA(Z, jetm(X/Y, δA)),

where the A-scheme structures of Z ×A A[t]/(tm+1) is induced by the exponential map e : A → A[t]/(tm+1), a 7→∑m
i=0

δiA(a)
i! ti. Buium’s definition specializes to the one of Vojta if the derivation δA is trivial. Rosen generalizes

Buium’s definition by using higher derivations. Given a finite free commutative S-algebra scheme E over k, a
commutative E-ring e : A → E(A) and a scheme X over Y = SpecA, Moosa and Scanlon define the prolongation
space τ(X, E , e) of X with respect to e : A→ E(A) as the Weil restriction of X×A Ee(A) from E(A) to A. Therefore
for every A-scheme Z there is a bijection

SchA(Z ×A E(A), X) ∼= SchA(Z, τ(X, E , e)).

By taking E(A) := A[t]/(tm+1) and e : A → E(A) to be the ring homomorphism induced by a (higher) derivation,
one recovers the definitions of the Buium’s jet spaces and Rosen’s prolongation spaces as well as the tangent bundle,
Vojta’s jet spaces if the (higher) derivation is trivial.

Moosa and Scanlon define their prolongation spaces as certain Weil restrictions. Our generalized differentials
provide an alternative and more direct construction of their prolongation spaces, at least in the case of affine schemes.
Although it is not explicitly mentioned in their articles, it seems that they assume the finite free S-algebra schemes E
to be commutative, which is equivalent to the coalgebra D associated to E to be cocommutative. Here we try not to
impose this condition when it is not necessary, since operators like skew-derivations are described as a D-measurings
for coalgebras D that are not cocommutative. We note that commutative rings with iterative q-difference operators,
as introduced by Hardouin in [Har10], can be described as D-module algebras for a cocommutative bialgebra D, as
Masuoka and Yanagawa show, cf. [MY13].

Our interest in generalized differentials arose from the use of D-measurings and D-module algebras in Galois
theories of functional equations, cf. [Tak89], [AM05], [AMT09], [Hei10], [Hei], [Hei13a].

This article is organized as follows: In the first section we begin with a review of Kähler differentials and a version
of Kähler differentials relative to a derivation on the base ring. We recall higher derivations, introduced by Hasse
and Schmidt (cf. [HS37]), which generalize classical derivations. Then we review divided differentials as defined
by Vojta [Voj07] and higher differentials as defined by Rosen [Ros08]. We also recall differential prolongations due
to Gillet [Gil02] and difference prolongations due to Hrushovski, Tomasic and Wibmer, cf. [Hru04], [Tom11] and
[Wib13]. Finally we also include the definition of differential kernels of Johnson [Joh82], [Joh85]) and of difference
kernels due to Wibmer [Wib12].

In section 2 we briefly recall the notion of a measuring and of module algebras, which we use to define our
generalized differentials.

In section 3 we define generalized differentials. We prove universal properties of these generalized differentials and
show how they generalize and unify several of the objects introduced in the first section. We also show functorial
properties of our generalized differentials.

Section 4 recalls several definitions of prolongation spaces. The most well-known of them is the tangent bundle.
We recall the definitions of Vojta’s scheme of jet differentials, Buium’s jet spaces and Rosen’s prolongation spaces
and see how they generalize the tangent bundle. We also observe how these jet and prolongation spaces can be
constructed using some of the objects introduced in the first section.

Finally, in section 5 we recall the definition of prolongation spaces due to Moosa and Scanlon ([MS10], [MS11])
and provide a new construction of them in terms of our generalized differentials. We show how they specialize to
the spaces introduced in section 4.

Notation: We assume all rings and algebras to be unital and associative, but not necessarily to be commutative.
Homomorphisms of algebras are assumed to respect the units and modules over (unital) rings are assumed to be
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unitary. We further assume that all coalgebras are counital and coassociative, but not necessarily to be cocommu-
tative. Homomorphisms of coalgebras are assumed to respect the counits. If (D,∆, ε) is a coalgebra and d ∈ D,
then we use the Sweedler notation and denote ∆(d) by

∑
(d) d(1) ⊗ d(2). Let R be a commutative ring. We denote

the category of algebras over R by AlgR and the category of left R-modules by RM. The category of commutative
R-algebras is denoted by CAlgR. We denote the symmetric algebra of an R-module M by SymR(M). The category
of schemes over R is denoted by SchR. An R-ring is a ring together with a ring homomorphism from R into it.

If C is a category and A and B are objects in C, then we denote the class of morphisms from A to B in C by
C(A,B).

The category of sets is denoted by Set. If A and B are sets and a ∈ A, then we denote by eva : Set(A,B) → B
the evaluation map, i.e. eva(f) = f(a) for all f ∈ Set(A,B). For elements a, b ∈ A we denote by δa,b the Kronecker
delta, i.e. δa,a = 1 and δa,b = 0 if a 6= b.

We denote by N the set of natural numbers (including 0) and by Z the integers. Let k be a commutative ring.

1. Review of differentials, differential- and difference kernels and of prolongations

This section is of introductory nature and we do not claim originality of most of its definitions and results. We
first recall the classical Kähler differentials and a version of them relative to a derivation on the base ring. The
latter is probably known, but have not found any reference. Then we recall the definition of higher derivations. We
show how Vojta’s divided differentials and a similar object, introduced by Rosen, generalize the Kähler differentials
and the above mentioned relative version of them. We recall two results on differential and difference prolongations
of commutative rings. Finally we state the definitions of differential kernels due to Johnson and of difference kernels
due to Wibmer.

1.1. Kähler differentials. Given a commutative ring A and a commutative A-algebra f : A → B, a module of
Kähler differentials of B over A is a B-module Ω1

B/A together with an A-derivation d: B → Ω1
B/A, which satisfies

the following universal property: For every B-module M and every A-derivation ∂ : B → M there exists a unique
morphism of B-modules φ : Ω1

B/A →M such that ∂ = φ ◦ d. Therefore there is an isomorphism of B-modules

DerA(B,M)
∼−→ BM(Ω1

B/A,M),(1.1)

where DerA(B,M) denotes the A-derivations from B to M . By the universal property the module of Kähler
differentials is unique. It also exists and there are two well-known constructions.

First, the Kähler differentials can be constructed by taking Ω1
B/A to be the quotient of the free B-module

generated by {d b | b ∈ B} by the submodule generated by the elements

d(b+ b′)− d b− d b′, d(bb′)− bd b′ − b′ d b and d f(a)

for all b, b′ ∈ B and a ∈ A. The A-derivation d: B → Ω1
B/A is defined by sending b to the image of d b in Ω1

B/A,

which we denote by abuse of notation again by d b, for all b ∈ B. The universal property is fulfilled by construction.
A second construction is as follows: If m: B⊗AB → B is the multiplication of the A-algebra B and I = Ker m is

its kernel, then d: B → I/I2, b 7→ [b⊗ 1− 1⊗ b] is a module of Kähler differentials, cf. [Mat80, p. 182] for instance.
Later we use the isomorphism (1.1) in the case where M is a commutative B-algebra, in the form

DerA(B,M)
∼−→ AlgB(SymB(Ω1

B/A),M),(1.2)

where SymB(Ω1
B/A) denotes the symmetric algebra of Ω1

B/A over B.

Remark 1.1. There is an isomorphism of B-algebras

SymB(Ω1
B/A) ∼= B[d b | b ∈ B]/I,

where I is the ideal generated by

d(b+ b′)− d b− d b′, d(bb′)− bd b′ − b′ d b and d f(a)

for all b, b′ ∈ B and a ∈ A.
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1.2. Kähler differentials relative to a derivation.

Notation: Let A be a commutative ring, f : A→ B be a commutative A-algebra and δA : A→ A be a derivation.

If g : B → R is a commutative B-algebra, then we denote the set of derivations ∂ : B → R extending δA by

DerδA(B,R) := {∂ ∈ DerZ(B,R) | ∂ ◦ f = g ◦ f ◦ δA}
The derivation d: B → Ω1

B/Z induces a derivation

d: B → SymB(Ω1
B/Z)/If◦δA ,

where If◦δA is the ideal of SymB(Ω1
B/Z) that is generated by d f(a)−f(δA(a)) for all a ∈ A. This derivation extends

the given derivation δA : A→ A and fulfills the following universal property:

Lemma 1.2. If g : B → R is a commutative B-algebra and ∂ ∈ DerδA(B,R) is a derivation extending δA, then
there exists a unique homomorphism of B-algebras φ : SymB(Ω1

B/Z)/If◦δA → R such that φ ◦ d = ∂, i.e. there is a

bijection

DerδA(B,R) ∼= AlgB(SymB(Ω1
B/Z)/If◦δA , R).(1.3)

Proof. The homomorphism of B-algebras φ is uniquely defined by φ(d b) := ∂(b). This is well defined, since
φ(d f(a)− f(δA(a))) = ∂(f(a))− g(f(δA(a))) = 0 for all a ∈ A. �

Remark 1.3. We have

SymB(Ω1
B/Z)/If◦δA

∼= B[d b | b ∈ B]/I,

where I is the ideal generated by

d(b+ b′)− d b− d b′, d(bb′)− bd b′ − b′ d b and d(f(a))− f(δA(a))

1.3. Higher derivations. We briefly recall the definition of higher derivations.

Notation: Let A be a commutative ring, B and R be commutative A-algebras and m be a natural number or ∞.

Definition 1.4. A higher derivation of length m from B to R over A is a sequence1 δ = (δ(0), . . . , δ(m)) of
homomorphisms of A-modules δ(i) : B → R such that

δ(i)(b1b2) =
∑

i1+i2=i

δ(i1)(b1) · δ(i2)(b2) and δ(i)(1) = δi,0

for all b1, b2 ∈ B and all i ∈ {0, . . . ,m}. We denote the set of higher derivations of length m from B to R over
A by DermA (B,R). A higher derivation δ = (δ(0), . . . , δ(m)) from B to itself is called unital if δ(0) = idB and it is

called iterative if δ(i) ◦ δ(j) =
(
i+j
i

)
δ(i+j) for all i, j ∈ N.

Remark 1.5. There is a discrepancy in the definition of higher derivations in the literature. While a condition on
the 0th higher derivation is imposed in [Mat89], no such condition is present in [Swe69].

Remark 1.6. We define Rm to be the quotient R[t]/(tm+1) of the polynomial ring R[t] if m ∈ N and R∞ := RJtK.
A sequence δ = (δ(i))i=0,...,m of maps δ(i) : B → R is a higher derivation of length m from B to R over A if and
only if the map

θ : B → Rm, b 7→
m∑
i=0

δ(i)(b)ti

is a homomorphism of A-algebras, where Rm is considered as A-algebra via the composition of its natural R-algebra
structure and the given A-algebra structure of R. Therefore there is a bijection

DermA (B,R) ∼= AlgA(B,Rm).(1.4)

Note that Der1
A(B,R) does not coincide with DerA(B,R) as defined in subsection 1.1. Their relation is explained

in remark 1.10.

1If m =∞, then we write by abuse of notation δ = (δ(0), . . . , δ(m)) instead of δ = (δ(i))i∈N and similarly in other situations.
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1.4. Vojta’s divided differentials.

Notation: Let A be a commutative ring and f : A→ B be a commutative A-algebra.

Definition 1.7 ([Voj07, Definition 1.3]). For every natural number m, the B-algebra of divided differentials HSmB/A
is defined as the quotient2

HSmB/A := B[b(i) | b ∈ B, i ∈ {0, . . . ,m}]/I,
where I is the ideal generated by the elements

(b+ b′)(i) − (b)(i) − (b′)(i), (bb′)(i) −
∑

i1+i2=i

b(i1)b′(i2), f(a)(j) and (b)(0) − b

for all b, b′ ∈ B, a ∈ A, i ∈ N and j ≥ 1.

There is a higher derivation d = (d(i))i=0,...,m of length m from B to HSmB/A over A given by the A-linear maps

d(i) : B → HSmB/A, b 7→ b(i),

which we call the universal higher derivation of length m.

Remark 1.8. We have isomorphisms of B-algebras HS0
B/A
∼= B and

HS1
B/A
∼= SymB(Ω1

B/A),(1.5)

where Ω1
B/A is the module of Kähler differentials of B over A as defined in subsection 1.1.

The B-algebras (HSmB/A)m∈N form a direct system and we define

HS∞B/A := lim−→
m∈N

HSmB/A .

Proposition 1.9 ([Voj07, Corollary 1.8]). For every commutative A-algebra R there is an isomorphism

AlgA(B,R[t]/(tm+1)) ∼= AlgA(HSmB/A, R).(1.6)

Therefore the higher derivation d = (d(i) : B → HSmB/A)i=0,...,m is universal among all higher derivations of length
m over A from B to a commutative A-algebra R.

Remark 1.10. Let g : B → R be a commutative B-algebra. Using the isomorphism (1.5) and considering R[t]/(t2)

as R-algebra via the canonical R-algebra structure and as B-algebra via the composition B
g−→ R → R[t]/(t2), we

obtain horizontal isomorphisms

Der1
A(B,R)

(1.4)
// AlgA(B,R[t]/(t2))

(1.6)
// AlgA(HS1

B/A, R)
(1.5)

// AlgA(SymB(Ω1
B/A), R)

DerA(B,R)
?�

OO

∼ //

(1.2)

00{θ ∈ AlgA(B,R[t]/(t2)) | ε ◦ θ = g} ∼ //
?�

OO

AlgB(HS1
B/A, R)

(1.5)
//

?�

OO

AlgB(SymB(Ω1
B/A), R),

?�

OO

where ε : R[t]/(t2) → R is the R-algebra homomorphism defined by ε(t) = 0. Therefore the isomorphism 1.6 can
be considered as a generalization of the isomorphism (1.2) if the module M is a B-algebra. Elements of the sets
in the first row are specified by a pair (σ, ∂) consisting of a homomorphism σ ∈ AlgA(B,R) and an A-derivation
∂ ∈ DerA(B,R), where R is considered as B-algebra via σ. In this description elements of the second row correspond
to such pairs (σ, ∂) with σ = g.

Remark 1.11. The algebra of higher differentials Ω̂B/A defined by Maurischat (cf. [Mau10, Theorem 3.10]) is a
completion of HS∞B/A.

2Vojta defines HSmB/A as the quotient of B[b(i) | b ∈ B, i ∈ {1, . . . ,m}] by an ideal defined similarly as the ideal I below, but without

the relation b(0) − b for b ∈ B and identifies b(0) with b. This is equivalent to the definition here.
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1.5. Rosen’s higher differentials.

Notation: Let A be a commutative ring.

Definition 1.12 ([Ros08, Definition 1.4]). A commutative D-ring over A is a commutative A-algebra B together

with a higher derivation δB = (δ
(i)
B )i∈N of length ∞ from B to itself such that δ

(0)
B = idB. A commutative D-ring

(B, δB) over A is said to be iterative, if the higher derivation δB is iterative.

Definition 1.13 ([Ros08, Definition 1.8]). Let (A, δA) be a commutative D-ring (over A). A commutative A-algebra

f : A → B is a commutative (A, δA)-algebra if for all a ∈ A, the equality f(a) = 0 implies f(δ
(i)
A (a)) = 0 for all

i ∈ N, i.e. if Ker f is a D-ideal.
If f : A→ B1 and g : A→ B2 are commutative (A, δA)-algebras, then a higher derivation from B1 to B2 of length

m over (A, δA) is a sequence ∂ = (∂(i))i=0,...,m of maps ∂(i) : B1 → B2 such that

(1) ∂(i)(b+ b′) = ∂(i)(b) + ∂(i)(b′),
(2) ∂(i)(b · b′) =

∑
i1+i2=i ∂

(i1)(b) · ∂(i2)(b′) and

(3) ∂(i)(f(a)) = g(δ
(i)
A (a))

for all a ∈ A, b, b′ ∈ B and i = 0, . . . ,m. We denote the set of higher derivations from B1 to B2 of length m over
(A, δA) by Derm(A,δA)(B1, B2).

Remark 1.14. If the higher derivation δA = (δA)i∈N on A is trivial, i.e. if δ
(i)
A = 0 holds for all i ≥ 1, then

definition 1.13 reduces to definition 1.4.

Definition 1.15 ([Ros08, Definition 1.9]). Given a commutative D-ring (A, δA) and a commutative (A, δA)-algebra
f : A→ B, we define a B-algebra

HSmB/(A,δA) := B[b(i) | b ∈ B, 0 ≤ i ≤ m]/I,

where I is the ideal generated by

(b+ b′)(i) − b(i) − b′(i), (bb′)(i) −
∑

i1+i2=i

b(i1)b′(i2), f(a)(i) − f(δ
(i)
A (a)) and b(0) − b

for all a ∈ A, all b, b′ ∈ B and all i = 0, . . . ,m.

Remark 1.16. (1) If (A, δA) is the trivial higher differential ring (i.e. δ
(0)
A = idA and δ

(j)
A = 0 for all j ≥ 1),

then every commutative A-algebra B is an (A, δA)-algebra and HSmB/(A,δA) in definition 1.15 coincides with

the B-algebra HSmB/A as defined by Vojta, cf. definition 1.7.

(2) If δA = (idA, δ
(1)
A ) is the higher derivation of length 1 on A that is induced by a derivation δ

(1)
A : A→ A and

if f : A→ B is a commutative A-algebra, then there is a bijection of B-algebras

(1.7) HS1
B/(A,δA)

∼= SymB(Ω1
B/Z)/I

f◦δ(1)A
,

cf. subsection 1.2.

Definition 1.17 ([Ros08, Definition 1.11]). Let (A, δA) be a commutative D-ring. Then a commutative D-(A, δA)-

algebra is a commutative D-ring (B, ∂) that is also an (A, δA)-algebra via f : A→ B such that ∂(i)(f(a)) = f(δ
(i)
A (a))

for all i ∈ N and all a ∈ A.

Definition 1.18. Given a commutative D-ring (A, δA) and a commutative (A, δA)-algebra f : A → B, the B-
algebras (HSmB/(A,δA))m∈N form a directed system. We denote the direct limit by

HS∞B/(A,δA) := lim−→
m∈N

HSmB/(A,δA) .(1.8)

For m ∈ N we define rings

Am := A[t]/(tm+1) and A∞ := AJtK(1.9)
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and homomorphisms

e : A→ Am, a 7→
m∑
i=0

δ
(i)
A (a)ti(1.10)

for all m ∈ N and for m = ∞. We denote by Ãm the ring Am considered as an A-algebra via the homomorphism
e. Similarly, we denote by B̃m the ring Bm that is made into an A-algebra via the composition

A
e−→ Am → Bm, a 7→

m∑
i=0

f(δ
(i)
A (a))ti

The A-algebra B̃∞ is also denoted by B̃JtK.

Proposition 1.19 ([Ros08, Propositions 1.18 and 1.19 and Corollary 1.20]). Given a commutative D-ring (A, δA)
and two commutative (A, δA)-algebras B and R, there are isomorphisms

Derm(A,δA)(B,R)
∼−→ AlgA(HSmB/(A,δA), R)

and

(1.11) AlgA(B, R̃m)
∼−→ Derm(A,δA)(B,R)

and therefore also

AlgA(B, R̃m)
∼−→ AlgA(HSmB/(A,δA), R).(1.12)

Remark 1.20. (1) The isomorphism (1.12) generalizes (1.6).

(2) The diagram in remark 1.10 generalizes as follows: Let δ
(1)
A : A→ A be a derivation, δA = (idA, δ

(1)
A ) be the

associated higher derivation of length 1 on A, f : A → B be a commutative (A, δA)-algebra and g : B → R
be a commutative B-algebra.

Der1
(A,δA)(B,R)

(1.11)
// AlgA(B, R̃1)

(1.12)
// AlgA(HS1

B/(A,δA), R)
(1.7)
// AlgA(SymB(Ω1

B/Z)/I
f◦δ(1)A

, R)

Der
δ
(1)
A

(B,R)
∼ //

(1.3)

00

?�

OO

{θ ∈ AlgA(B, R̃1) | ε ◦ θ = g} ∼ //
?�

OO

AlgB(HS1
B/(A,δA), R)
?�

OO

(1.7)
// AlgB(SymB(Ω1

B/Z)/I
f◦δ(1)A

, R)
?�

OO

(3) An analogue of the isomorphism (1.12) exits also for m =∞ and has the form

AlgA(B, R̃JtK) ∼−→ AlgA(HS∞B/(A,δA), R).(1.13)

Lemma 1.21 ([Ros08, Lemma 1.12]). If (A, δA) is a commutative unital iterative differential ring, then the
B-algebra HS∞B/(A,δA) carries a canonical unital iterative higher derivation d = (d(l))l∈N of length ∞ defined by

d(l)(b(k)) :=
(
k+l
k

)
b(k+l) for all k, l ∈ N and all b ∈ B.

Proposition 1.22 ([Ros08, Proposition 1.21]). Let (A, δA) be an iterative D-ring. Then the forgetful functor from
the category of commutative iterative D-(A, δA)-algebras to the category of commutative (A, δA)-algebras has a left
adjoint, that sends an (A, δA)-algebra B to (HS∞B/(A,δA), d), where d is the iterative derivation on HS∞B/(A,δA) defined
in lemma 1.21.

Sketch of proof. If B is a commutative (A, δA)-algebra, (S, δS) a commutative D-(A, δA)-algebra and g : B → S is

a homomorphism of A-algebras, then we define G : (HS∞B/(A,δA), d) → (S, δS) by G(b(i)) := δ
(i)
S (g(b)) for all b ∈ B

and i ∈ N. �
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1.6. Differential prolongations. Gillet constructs prolongations in section 1.2 of [Gil02]. We summarize his
results.

Notation: Let (A, δA) be a commutative differential ring.

Definition 1.23. We denote by DifferentialCAlg(A,δA) the category of commutative differential (A, δA)-algebras, the
objects being commutative A-algebras f : A→ B equipped with a derivation δB : B → B such that δB◦f = f ◦δA, and
the morphisms from a commutative differential (A, δA)-algebra (B1, δB1) to (B2, δB2) being morphisms of A-algebras
ϕ : B1 → B2 such that ϕ ◦ δB1

= δB2
◦ ϕ.

Proposition 1.24 ([Gil02, Proposition 1.19]). The forgetful functor

U : DifferentialCAlg(A,δA) → CAlgA, (B, δB) 7→ B

has a left adjoint

( )∞ : CAlgA → DifferentialCAlg(A,δA), B 7→ (B∞, δ),

i.e. for every commutative A-algebra B and every commutative differential (A, δA)-algebra (S, δS) there is a bijection

DifferentialCAlg(A,δA)((B
∞, δ), (S, δS)) ∼= CAlgA(B,S).(1.14)

Proof. For a proof using general properties of forgetful functors we refer to [Gil02, Proposition 1.19]. We will
construct the algebra B∞ in proposition 1.29 below and show that it has the required property. �

Lemma 1.25 ([Gil02, Lemma 1.21]). Let X be a set. Then the functor

DifferentialCAlg(A,δA) → Set, (B, δB) 7→ BX(:= Set(X,B))

is representable, i.e. there is a commutative differential (A, δA)-algebra (A{X}, δ) such that

DifferentialCAlg(A,δA)((A{X}, δ), (B, δB)) ∼= BX

for all commutative differential (A, δA)-algebras (B, δB). In other words the forgetful functor from the category
DifferentialCAlg(A,δA) to Set is representable.

Proof. We define A{X} to be the differential ring over (A, δA) in the variables X, which is defined as the polynomial
A-algebra in the variables (x(i))x∈X,i∈N equipped with the derivation δ extending δA by δ(x(i)) := x(i+1) for all
x ∈ X and i ∈ N. Given a function f : X → B, we associate to it the function f̄ : A{X} → B defined by sending
x(i) to δiB(f(x)) for all x ∈ X and i ∈ N. �

Definition 1.26. The differential ring A{X} is called the ring of differential polynomials on the set X over (A, δA).

Lemma 1.27 ([Gil02, Lemma 1.23]). Let (A, δA) be a differential field and X be a set. Then (A[X])∞ is isomorphic
to the differential polynomial ring A{X}.

Proof. The left adjoint of the forgetful functor CAlgA → Set is given by X 7→ A[X]. The left adjoint of the
forgetful functor DifferentialCAlg(A,δA) → CAlgA is given by B → (B∞, δ) and the left adjoint of the forgetful
functor DifferentialCAlg(A,δA) → Set is

Set→ DifferentialCAlg(A,δA), X 7→ (A{X}, δ).

The composition of the first and second adjoint functor is the third one. Therefore we obtain (A[X])∞ ∼= A{X}. �

Let (A, δA) be a commutative differential ring and f : A→ B be a commutative A-algebra. We define B(−1) := A,
ρ−1 := f and δ(−1) := ρ−1 ◦ δA. We define a category T(A,δA,B) as follows: The objects are the sequences

(B(i), ρi, δ
(i))i∈N consisting of

(1) commutative rings B(i),
(2) ring homomorphism ρi : B

(i) → B(i+1) and
(3) derivations δ(i) : B(i) → B(i+1), where we consider B(i+1) as B(i)-algebra via ρi
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such that B(0) = B and

ρi ◦ δ(i−1) = δ(i) ◦ ρi−1(1.15)

for each i ≥ 0. The morphisms from (B(i), ρi, δ
(i))i∈N to (B′(i), ρ′i, δ

′(i))i∈N are families of ring homomorphisms
(fi : B

(i) → B′(i))i∈N such that f0 = idB ,

δ′(i) ◦ fi = fi+1 ◦ δ(i) and ρ′i ◦ fi = fi+1 ◦ ρi(1.16)

for all i ∈ N.

Remark 1.28. Let (A, δA) be a commutative differential ring and f : A → B be a commutative A-algebra. Let
further (S, δS) be a commutative differential (A, δA)-algebra that is a B-algebra via g : B → S. To this data there is
associated naturally an element of T(A,δA,B) given by

B(−1) := A, B(0) := B B(i) := S

ρ−1 := f, ρ0 := g ρi := idS

δ(−1) := f ◦ δA, δ(0) := δS ◦ g δ(i) := δS

for all i ≥ 1.

Proposition 1.29 ([Gil02, Proposition 1.26]). Let (A, δA) be a commutative differential ring and B be a commu-
tative A-algebra via f : A→ B.

(1) The category T(A,δA,B) has an initial object (B(i), ρi, δ
(i))i∈N.

(2) The algebras (B(i))i∈N∪{−1} form a direct system via the homomorphisms (ρi : B
(i) → B(i+1))i∈N∪{−1} and

the derivations δ(i) : B(i) → B(i+1) induce a derivation δ on the direct limit

B∞ := lim−→
i∈N∪{−1}

B(i).

(3) For every commutative differential (A, δA)-algebra (S, δS) and every n ∈ N there are natural bijections
between the following sets:

CAlgA(B,S)

{(f (i))i=0,...,n ∈ lim←−
i=0,...,n

CAlgA(B(i), S) | f (i) ◦ δ(i−1) = δS ◦ f (i−1)}

{(f (i))i∈N ∈ lim←−
i∈N

CAlgA(B(i), S) | f (i) ◦ δ(i−1) = δS ◦ f (i−1)}

DifferentialCAlg(A,δA)((B
∞, δ), (S, δS))

Proof. We construct the sequence (B(n), ρn, δ
(n))n∈N∪{−1} by induction on n. We have by definition B(−1) = A,

B(0) = B, ρ−1 = f and δ(−1) = f ◦ δA. Assume that for some n ≥ 1 a sequence

B(−1)

ρ−1

//

δ(−1)
//
B(0)

ρ0
//

δ(0) //
. . .

ρn−2

//

δ(n−2)
//
B(n−1)

is given such that the relations (1.15) hold for all i = 0, . . . , n−2. We define B(n) to be SymB(n−1)(Ω1
B(n−1)/Z)/Iδ(n−2) ,

the morphism ρn−1 to be the natural B(n−1)-algebra structure of SymB(n−1)(Ω1
B(n−1)/Z)/Iδ(n−2) and δ(n−1) to be the

derivation d: B(n−1) → SymB(n−1)(Ω1
B(n−1)/Z)/Iδ(n−2) extending δ(n−2) that we obtain by applying subsection 1.2

to B(n−2)

ρn−2

//
δ(n−2)

// B(n−1) .

In order to see that this sequence is an initial object, let (B′(n), ρ′n, δ
′(n))n∈N be an arbitrary object in T(A,δA,B).

We define a morphism (B(n), ρn, δ
(n))n∈N → (B′(n), ρ′n, δ

′(n))n∈N inductively as follows: First we define f0 := idB(0) .
Assume the morphisms f0, . . . , fn−1 are already defined for some n ≥ 1 and fulfill the commutation relations (1.16)
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for all i = 0, . . . , n− 2. We consider B′(n) as B(n−1)-algebra via ρ′n−1 ◦ fn−1. The derivation δ′(n−1) ◦ fn−1 extends

δ(n−2), since

ρ′n−1 ◦ fn−1 ◦ δ(n−2) = ρ′n−1 ◦ δ′(n−2) ◦ fn−2 = δ′(n−1) ◦ ρ′n−2 ◦ fn−2 = δ′(n−1) ◦ fn−1 ◦ ρn−2.

Therefore by lemma 1.2 there exists a unique fn ∈ AlgB(n−1)(B(n), B′(n)) such that δ′(n−1) ◦ fn−1 = fn ◦ δ(n−1).
Since fn is a morphism of B(n−1)-algebras, we conclude that fn ◦ ρn−1 = ρ′n−1 ◦ fn−1.

B(n−2)

ρn−2

//

δ(n−2)
//

fn−2

��

B(n−1)

ρn−1

//

δ(n−1)
//

fn−1

��

B(n)

fn
��

B′(n−2)

ρ′n−2

//

δ′(n−2)
//
B′(n−1)

ρ′n−1

//

δ′(n−1)
//
B′(n)

By induction we obtain a morphism (fn)n∈N from (B(n), ρn, δ
(n))n∈N to (B′(n), ρ′n, δ

′(n))n∈N.
The affirmation in part (2) is clear.
To prove that for every commutative differential (A, δA)-algebra (S, δS) there is a bijection

DifferentialCAlg(A,δA)((B
∞, δ), (S, δS)) ∼= CAlgA(B,S)

we note the following: Let g : B → S be a homomorphism of A-algebras. By remark 1.28 the sequence

A
f
//

f◦δA //
B

g
//

δS◦g //
S

idS

//

δS //
S

idS

//

δS //
S . . .

is an element of the category T(A,δA,B). Using the universal property of the initial object, we obtain homomorphisms

(fi)i∈N such that the following diagrams commute3

B(−1)

ρ−1

//

δ(−1)
//

idA

��

B(0)

ρ0
//

δ(0) //

idB

��

B(1)

ρ1
//

δ(1) //

f1

��

B(2)

ρ2
//

δ(2) //

f2

��

. . .

A
f

//

f◦δA //
B

g
//

δS◦g //
S

idS

//

δS //
S

idS

//

δS //
. . . ,

where B(−1) = A, B(0) = B, ρ−1 = f and δ(−1) = f ◦ δA. Together with f0 := idB we obtain an element
(fi)i∈N ∈ {(f (i))i∈N ∈ lim←−i∈N CAlgA(B(i), S) | f (i) ◦ δ(i−1) = δS ◦ f (i−1)} and therefore a map

CAlgA(B,S)→ {(f (i))i∈N ∈ lim←−
i∈N

CAlgA(B(i), S) | f (i) ◦ δ(i−1) = δS ◦ f (i−1)},

which is bijective with inverse given by the map that sends (fi)i∈N to f0. By truncation we obtain maps from

{(f (i))i∈N ∈ lim←−
i∈N

CAlgA(B(i), S) | f (i) ◦ δ(i−1) = δS ◦ f (i−1)}

to
{(f (i))ni=0 ∈ lim←−

i=0,...,n

CAlgA(B(i), S) | f (i) ◦ δ(i−1) = δS ◦ f (i−1)}

for all n ∈ N, which are also bijective as we have seen in the proof of part (1). Finally we note that the bijection
lim←−i∈N CAlgA(B(i), S) ∼= CAlgA(B∞, S) restricts to a bijection between {(f (i))i∈N ∈ lim←−i∈N CAlgA(B(i), S) | f (i) ◦
δ(i−1) = δS ◦ f (i−1)} and DifferentialCAlg(A,δA)((B

∞, δ), (S, δS)). �

Example 1.30. Let B = A[x] be the polynomial ring over A, considered as A-algebra via the homomorphism
f : A → A[x] that sends a ∈ A to the constant polynomial a. If we apply proposition 1.29 in this situation,
then we obtain B(1) = SymA[x](ΩA[x]/Z)/I∂A = A[x(0), x(1)], where we denote x by x(0) and dx by x(1) and the

derivation δ(0) : A[x] → A[x(0), x(1)] is the derivation extending f ◦ ∂A by δ(0)(x) = x(1). In general B(n) =

3We consider this as two diagrams, one formed by the upper one of each pair of horizontal arrows and one with the lower one.
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SymA[x(0),x(1),...,x(n−1)](Ω
1
A[x(0),x(1),...,x(n−1)]/Z)/Iδ(n−2) = A[x(0), x(1), . . . , x(n)], and B∞ = A[x(n) | n ∈ N] with

derivation δ : B∞ → B∞ extending δA by δ(x(i)) = x(i+1) for all i ∈ N. The differential ring B∞ is usually denoted
by A{x} and is called the differential polynomial algebra.

1.7. Difference prolongations. We recall a difference analogue of the differential prolongations, cf. [Hru04, p.
21], [Tom11, Proposition 2.1] or [Wib13, Proposition 1.1.26].

Definition 1.31. If A is a commutative ring and σA an endomorphism of A, then a commutative difference (A, σA)-
algebra is a commutative A-algebra f : A→ B together with an endomorphism σB of B such that σB ◦ f = f ◦ σA.

Let DifferenceCAlg(A,σA) denote the category of commutative difference (A, σA)-algebras, the morphisms from

(B1, σB1
) to (B2, σB2

) being morphisms of A-algebras ϕ : B1 → B2 such that ϕ ◦ σB1
= σB2

◦ ϕ.

Proposition 1.32. Let A be a field and σA be an endomorphism of the field A. Let further B be a commutative
A-algebra. Then there exists a commutative difference (A, σA)-algebra ([σ]AB, σ) and a morphism ψ : B → [σ]AB
of A-algebras satisfying the following universal property: For every commutative difference (A, σA)-algebra (S, σS)
and every morphism g : B → S of A-algebras there exists a unique morphism G : [σ]AB → S of difference (A, σA)-
algebras such that the diagram

B
ψ

//

g
��

[σ]AB

G
||

S

(1.17)

commutes. The commutative difference (A, σA)-algebra ([σ]AB, σ) is unique up to unique isomorphism in the sense
that for every commutative difference (A, σA)-algebra (S, σS) there is a bijection

CAlgA(B,S)
∼−→ DifferenceCAlg(A,σA)(([σ]AB, σ), (S, σS)),

i.e. the forgetful functor DifferenceCAlg(A,σA) → CAlgA has a left-adjoint.

Proof. For i ∈ N let σiAB be the ring B ⊗A A, where the A-algebra structure on the right factor is σiA. We

consider σiAB as A-algebra via the right factor, which is considered as A-algebra via the identity on A. There is a
homomorphism of rings

ψi :
σiAB → σi+1

A B, b⊗ a 7→ b⊗ σA(a).

We define

Bi := B ⊗A σAB ⊗A · · · ⊗A σiAB.(1.18)

The family of A-algebras (Bi)i∈N becomes a direct system via the morphisms

Bi → Bi+1, b0 ⊗ · · · ⊗ bi 7→ b0 ⊗ · · · ⊗ bi ⊗ 1

and we define [σ]AB as the direct limit lim−→i∈NBi.

The morphisms

σi : Ri → Ri+1, b0 ⊗ · · · ⊗ bi 7→ 1⊗ ψ0(b0)⊗ · · · ⊗ ψi(bi)
induce a morphism σ : [σ]AB → [σ]AB. We define ψ : B → [σ]AB by identifying B with B0.

Let (S, σS) be a commutative difference (A, σA)-algebra and let g : B → S be a morphism of A-algebras. We
define morphisms of A-algebras

Gi :
σiAB → S, b⊗ a 7→ σiS(g(b)) · g(f(a)).

The morphisms Gi induce morphisms of A-algebras

Bk → S, b0 ⊗ · · · ⊗ bk 7→ G0(b0) . . . Gk(bk)

for all k ∈ N and finally a morphism of A-algebras

G : [σ]AB → S.
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For b⊗ a ∈ σiB we have

Gi+i(ψi(b⊗a))=Gi+1(b⊗σA(a))=σi+1
S (g(b))g(f(σA(a)))=σi+1

S (g(b))σS(g(f(a)))=σS(σiS(g(b))g(f(a)))=σS(Gi(b⊗a))

and therefore

G(σ(b0 ⊗ · · · ⊗ bi)) = G(1⊗ ψ0(b0)⊗ · · · ⊗ ψi(bi))
= G1(ψ0(b0)) . . . Gi+1(ψi(bi))

= σS(G0(b0)) . . . σS(Gi(bi))

= σS(G(b0 ⊗ · · · ⊗ bi)),

i.e. G is a morphism of difference (A, σA)-algebras. The diagram (1.17) commutes, since we have G(ψ(b)) = G(b) =
G0(b) = g(b) for all b ∈ B. In order to show that the morphism G is unique, it is enough to show that any morphism
G′ : [σ]AB → S of difference (A, σA)-algebras coincides with G on each Bi, i ∈ N, and it is even enough to show that

it coincides with Gi on each σiAB, which is the case, since G′(σi(ψ(b))) = σiS(G′(ψ(b))) = σiS(g(b)) = Gi(σ
i(ψ(b))).

The uniqueness of [σ]AB can be shown as usual. �

Example 1.33. Let A be a field with endomorphism σA of A and let B = A[x] be the polynomial algebra in one
variable x over A. Then the difference (A, σA)-algebra [σ]AB in proposition 1.32 is isomorphic to the difference
polynomial ring

A{x} := A[σn(x) | n ∈ N]

equipped with the endomorphism σ extending σA via

σ : A{x} → A{x}, σn(x) 7→ σn+1(x)

Proof. The A-algebras σ
i
AB in the proof of proposition 1.32 are isomorphic to B itself. Therefore Bi is an (i+1)-fold

tensor product of B = A[x] with itself over A, which is isomorphic to the polynomial algebra A[x, σ(x), . . . , σi(x)].
Their direct limit [σ]AB is isomorphic to A{x} and it is easy to see that the endomorphism σ on A{x} corresponds
to σ : [σ]AB → [σ]AB under this isomorphism. �

1.8. Differential kernels and their prolongations. Johnson introduces differential kernels and their prolonga-
tions in [Joh82] and [Joh85].

Definition 1.34 ([Joh85, §I.1, p.176] or [Joh82, I.1, p. 94]). An m-differential kernel is a homomorphism of
commutative rings f : U1 → U2 together with derivations δ1, . . . , δm from U1 to U2 (we consider U2 as U1-module
via the U1-algebra structure f).

A morphism of m-differential kernels from U1
(f,δ1,...,δm)−−−−−−−−→ U2 to V1

(g,∂1,...,∂m)−−−−−−−−→ V2 consists of two ring homo-
morphisms ϕj : Uj → Vj for j = 1, 2 such that the diagrams

U1
f
//

ϕ1

��

U2

ϕ2

��

V1
g
// V2

and U1
δi //

ϕ1

��

U2

ϕ2

��

V1
∂i // V2

commute for all i ∈ {1, . . . ,m}.

Definition 1.35 ([Joh82, p. 95]). Let U
(f,δ1,...,δm)−−−−−−−−→ V and V

(g,∂1,...,∂m)−−−−−−−−→ W be two m-differential kernels. We
say that (g, ∂1, . . . , ∂m) prolongs (f, δ1, . . . , δm) if we have for all u ∈ U that ∂i(f(u)) = g(δi(u)) and ∂i(δj(u)) =
∂j(δi(u)), i.e. if the diagrams

U
δi //

f

��

V

g

��

V
∂i // W

and U
δi //

δj
��

V

∂j
��

V
∂i // W

commute for all i, j ∈ {1, . . . ,m}.
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If V
(g,∂1,...,∂m)−−−−−−−−→ W and V

(g′,∂′1,...,∂
′
m)−−−−−−−−→ W ′ are prolongations of the differential kernel U

(f,δ1,...,δm)−−−−−−−−→ V , then a
morphism from (g, ∂1, . . . , ∂m) to (g′, ∂′1, . . . , ∂

′
m) is any ring homomorphism h : W → W ′ such that (idV , h) is a

morphism of the differential kernel (g, ∂1, . . . , ∂m) to (g′, ∂′1, . . . , ∂
′
m).

If V
(g,∂1,...,∂m)−−−−−−−−→ W is a prolongation of the differential kernel U

(f,δ1,...,δm)−−−−−−−−→ V and h : W → W ′ is a ring
homomorphism, then g′ := h ◦ g : V → W ′ together with the derivations ∂′i := h ◦ ∂i form a differential kernel that
prolongs U → V , since the diagrams

U
δi //

f

��

V

g

�� g′

��

V
∂i //

g′ ++

W

h

!!

W ′

and U
δi //

δj
��

V

∂j
�� ∂′j

��

V
∂i //

∂′i ++

W
h

!!

W ′

commute. We says that this is the prolongation defined by h.

Proposition 1.36 (Proposition 1.4 in [Joh82]). Let A
(f,δ)−−−→ B be a differential kernel. There exists a differential

kernel B
(g,∂)−−−→ C prolonging (f, δ) such that if B

(g′,∂′)−−−−→ C ′ is another prolongation of (f, δ), then (g′, ∂′) is defined
by h for a unique h : C → C ′.

Example 1.37. If B = A[x], then the universal prolongation of the differential kernel that is given by the inclusion
A ↪→ A[x] and the trivial derivation, which is provided by proposition 1.36, is given by the inclusion A[x] ↪→
A[x,X(1)] and the derivation ∂ : A[x] → A[x,X(1)] over A that is defined by ∂(x) = X(1). Note that this is the
same as B → B(1) in example 1.30.

1.9. Difference kernels and their prolongations. We recall the definition of difference kernels due to Wibmer
(cf. [Wib13] or [Wib12] for a more general definition).

Notation: Let K be a difference field (i.e. a field equipped with an endomorphism σK) and t be a natural number
greater or equal to 1.

LetK{X} be the difference polynomial ring over (K,σK), cf. example 1.33. There is a family (K[x, σ(x), . . . , σt(x)])t∈N
of subrings of K{x} and the endomorphism σ of the K-algebra K{x} restricts to homomorphisms of K-algebras
σ : K[x, . . . , σt−1(x)]→ K[x, . . . , σt(x)] such that σ(σj(x)) := σj+1(x) for all j ∈ {0, . . . , t− 1}.

Definition 1.38. A difference kernel of length t in the difference polynomial ring K{x} is a prime ideal pt of the
subring K[x, . . . , σtx] of K{x} such that σ−1(pt) = pt ∩K[x, . . . , σt−1(x)].

Definition 1.39. A prolongation of a difference kernel pt of length t is a difference kernel pt+1 of length t+ 1 such
that pt+1 ∩K[x, . . . , σtx] = pt holds.

Remark 1.40. Let K be a field and pt ⊆ K[x, . . . , σt(x)] be a difference kernel of length t. It induces two
homomorphisms:

(1) The homomorphism

σ : K[x, . . . , σt−1(x)]→ K[x, . . . , σt(x)], σi(x) 7→ σi+1(x)

induces a ring homomorphism

σ̄ : K[x, . . . , σt−1(x)]/(pt ∩K[x, . . . , σt−1(x)])→ K[x, . . . , σt(x)]/pt.

(2) The inclusion ι : K[x, . . . , σt−1x] ↪→ K[x, . . . , σtx] induces an injection

ῑ : K[x, . . . , σt−1x]/(pt ∩K[x, . . . , σt−1(x)])→ K[x, . . . , σtx]/pt.

A prolongation pt+1 of pt also induces two homomorphisms

ῑ : K[x, . . . , σtx]/(pt ∩K[x, . . . , σtx])→ K[x, . . . , σt+1x]/pt+1.
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and

σ̄ : K[x, . . . , σtx]/(pt ∩K[x, . . . , σtx])→ K[x, . . . , σt+1x]/pt+1

such that the following diagram commutes

K[x, . . . , σt−1x]/(pt ∩K[x, . . . , σt−1x])
ῑ //

σ̄

��

K[x, . . . , σtx]/pt

σ̄

��

K[x, . . . , σtx]/pt
ῑ // K[x, . . . , σt+1x]/pt+1.

In the form of pairs (ῑ, σ̄) a difference kernel and its prolongations are of a similar nature as 1-differential
kernels and their prolongations as defined by Johnson (cf. subsection 1.8), just with a homomorphism σ̄ instead of
a derivation ∂.

2. Measurings and module algebras

Given a k-coalgebra D, we recall the definition of D-measurings and, if D is a k-bialgebra, of D-module algebras.
For k-modules A,B and D there is an isomorphism of (left) k-modules

(2.1) kM(D ⊗k A,B)→ kM(A, kM(D,B)), ψ 7→ (a 7→ (d 7→ ψ(d⊗ a))).

Lemma 2.1. If (D,∆D, εD) is a k-coalgebra and (B,mB , ηB) is a k-algebra, then the k-module kM(D,B) becomes
a k-algebra with respect to the convolution product, defined by

f · g := mB ◦(f ⊗ g) ◦∆D

for f, g ∈ kM(D,B), and unit element given by the composition

D
εD−−→ k

ηB−−→ B.

Furthermore, D is cocommutative if and only if kM(D,B) is commutative for every commutative k-algebra B.
If B is commutative, then kM(D,B) is a B-algebra via

ρ0 : B → kM(D,B), b 7→ (d 7→ ε(d)b).

Proof. See for example [BW03, 1.3] for a proof of the first two statements. The last statement holds, since for all
d ∈ D and all b ∈ B we have

(ρ0(b) · f)(d) =
∑
(d)

ε(d(1)) · b · f(d(2)) = b · f(d) = f(d) · b =
∑
(d)

f(d(1)) · ε(d(2)) · b = (f · ρ0(b))(d).

�

Proposition 2.2. Let D be a k-coalgebra and let A and B be k-algebras. If ψ is an element of kM(D ⊗k A,B)
and ρ ∈ kM(A, kM(D,B)) is the image of ψ under the isomorphism (2.1), then the following are equivalent:

(1) ρ is a homomorphism of k-algebras and
(2) for all d ∈ D and all a, b ∈ A

(a) ψ(d⊗ ab) =
∑

(d) ψ(d(1) ⊗ a)ψ(d(2) ⊗ b) and

(b) ψ(d⊗ 1A) = εD(d)1B.

Proof. This can be seen by expanding the definition of ρ and of the condition that ρ be a homomorphism of
k-algebras as is worked out in detail in [Swe69, Proposition 7.0.1]. �

Definition 2.3. Let D be a k-coalgebra and A and B be k-algebras. We say that ψ ∈ kM(D⊗k A,B) measures A
to B if the equivalent conditions in proposition 2.2 are satisfied. The homomorphism ψ is then called a D-measuring
from A to B.
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If A1, A2, B1 and B2 are k-algebras, ψ1 : D ⊗k A1 → B1 measures A1 to B1 and ψ2 : D ⊗k A2 → B2 measures
A2 to B2, then we say that homomorphisms ϕA : A1 → A2 and ϕB : B1 → B2 of k-algebras are compatible with
the D-measurings if the diagram

D ⊗k A1

idD ⊗ϕA
��

ψ1 // B1

ϕB

��

D ⊗k A2
ψ2 // B2

commutes.
If the k-coalgebra D contains a group-like element 1 and B is an A-algebra via f : A→ B, then a D-measuring

ψ ∈ kM(D ⊗A,B) is called unital if ψ(1⊗ a) = f(a) for all a ∈ A.
If D is a k-bialgebra and ψ ∈ kM(D⊗k A,A) is a D-measuring that makes A into a D-module, then ψ is called

a D-module algebra structure and (A,ψ) is a D-module algebra. Morphisms of D-module algebras are morphisms
of k-algebras that are compatible with the D-measurings.

The following lemma is clear from the definitions.

Lemma 2.4. Let D be a k-coalgebra and A1, A2, B1 and B2 be k-algebras. If ψ1 ∈ kM(D ⊗k A1, B1) measures
A1 to B1 and ψ2 ∈ kM(D ⊗k A2, B2) measures A2 to B2 and ρ1 : A1 → kM(D,B1) and ρ2 : A2 → kM(D,B2)
are the homomorphisms of k-algebras associated to ψ1 and ψ2, respectively, then homomorphisms of k-algebras
ϕA : A1 → A2 and ϕB : B1 → B2 are compatible with the D-measurings if and only if the diagram

A1
ρ1 //

ϕA

��

kM(D,B1)

kM(D,ϕB)

��

A2
ρ2 //

kM(D,B2)

commutes.

Example 2.5. Let A and B be commutative k-algebras.

(1) Let m be a natural number or∞ and let Dm := k〈θ(0), . . . , θ(m)〉 be the free k-module with basis {θ(0), . . . , θ(m)}
equipped with a k-coalgebra structure given by the homomorphisms of k-modules ∆: Dm → Dm ⊗k Dm and
ε : Dm → k defined by

∆(θ(i)) =
∑

i=i1+i2

θ(i1) ⊗ θ(i2) and ε(θ(i)) = δi,0(2.2)

for all i = 0, . . . ,m. A Dm-measuring ψm : Dm ⊗k A→ B from A to B is equivalent to a higher derivation
δ = (δ(0), . . . , δ(m)) from A to B of length m, defined by δ(i)(a) := ψm(θ(i) ⊗ a) for all i ∈ {0, . . . ,m} and
all a ∈ A.

The k-coalgebra Dm contains the group-like element θ(0). A higher derivation δA = (δ
(0)
A , . . . , δ

(m)
A ) of

length m on A such that δ
(0)
A (a) = a for all a ∈ A induces a Dm-measuring ψm : Dm ⊗k A→ A from A to

itself defined by ψm(θ(i) ⊗ a) = δ
(i)
A (a) for all i ∈ {0, . . . ,m} and all a ∈ A that is unital with respect to the

group-like element θ(0) ∈ Dm.
The k-coalgebra D∞ becomes a k-bialgebra with respect to the k-algebra structure given by 1 := θ(0) and

θ(i) · θ(j) :=
(
i+j
i

)
θ(i+j) for all i, j ∈ N. A D∞-module algebra structure on A is equivalent to a unital

iterative derivation (δ
(i)
A )i∈N on A.

(2) We consider (1) in the special case m = 1. A D1-measuring ψ : D1 ⊗k A→ B is equivalent to a pair (σ, δ)
consisting of homomorphism of k-algebras σ : A→ B and a k-derivation δ : A→ B, where B is considered
as A-algebra via σ (i.e. δ(aa′) = δ(a)σ(a′) + σ(a)δ(a′) for all a, a′ ∈ A). This is equivalent to the data
specifying a 1-differential kernel, cf. definition 1.34.

The k-coalgebra D1 contains the group-like element θ(0) and a D1-measuring ψ1 : D1 ⊗ A → A from A
to itself that is unital with respect to θ(0) in the sense that ψ1(θ(0) ⊗ a) = a for all a ∈ A, is equivalent to a
k-derivation on A.
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The k-coalgebra D1 is isomorphic to the k-subcoalgebra k〈1, ∂〉 of the k-bialgebra D := k[Ga] = k[∂],
which is the coordinate ring of the additive group scheme Ga, with k-coalgebra structure given by

∆(1) = 1⊗ 1, ε(1) = 1, ∆(∂) = ∂ ⊗ 1 + 1⊗ ∂ and ε(∂) = 0.

There is a bijection between the set of D-module algebra structures on A and the set of k-derivations on A.
The D-module algebra structure ψA : D ⊗k A → A corresponding to a k-derivation δA : A → A is given by
ψA(∂i ⊗ a) := δiA(a) for all a ∈ A and all i ∈ N.

(3) For n ∈ N let Dn := k〈σ0, σ1 . . . σn〉 be the free k-module with basis {σ0, σ1, . . . , σn} with the k-coalgebra
structure defined by

∆(σi) := σi ⊗ σi and ε(σi) = 1(2.3)

for all i = 0, . . . , n. We denote the element σ0 ∈ Dn also by 1. A Dn-measuring ψn : Dn⊗k A→ B from A

to B is the same as a family of homomorphisms σ̃i : A→ B defined by σ̃i(a) := ψn(σi ⊗ a) for i = 0, . . . , n
and a ∈ A. The k-coalgebras Dn are k-subcoalgebras of the k-bialgebra D = k[σ] with k-coalgebra structure
defined by (2.3) for all i ∈ N. There is a bijection between the D-module algebra structures on A and the
endomorphisms of the k-algebra A.

(4) The coordinate ring D = k[Gm] of the multiplicative group scheme Gm over k is the localization k[σ, σ−1]
of the polynomial algebra k[σ] over k with k-coalgebra structure defined by equation (2.3) for all i ∈ Z.
There is a bijection between the set of automorphisms of the k-algebra A and the set of D-module algebra
structures on A. If σA is an automorphism of the k-algebra A, then the corresponding D-module algebra
structure ψA : D ⊗k A→ A is given by ψA(σi ⊗ a) := σiA(a) for all a ∈ A and i ∈ Z.

3. Generalized differentials

In this section we introduce generalized differentials and show how they specialize to objects introduced in
section 1.

Notation: Let D be a k-coalgebra, A be a commutative k-algebra, f : A→ B be a commutative A-algebra, ψA : D⊗k
A→ A be a D-measuring from A to itself, and ρA : A→ kM(D,A) be the homomorphism of k-algebras associated
to ψA via the isomorphism (2.1).

3.1. Definition and basic properties.

Definition 3.1. (1) We define a commutative A-algebra

ΩDB/(A,ψA) := A[d(b) | d ∈ D, b ∈ B]/I,

where A[d(b) | d ∈ D, b ∈ B] is the polynomial algebra over A in the variables d(b) and I is the ideal
generated by the elements

d(b) + d(b′)− d(b+ b′),(3.1)

d(bb′)−
∑
(d)

d(1)(b) · d(2)(b
′),(3.2)

d(f(a))− ψA(d⊗ a),(3.3)

(d+ d′)(b)− d(b)− d′(b) and(3.4)

(λd)(b)− λ · d(b)(3.5)

for all d, d′ ∈ D, b, b′ ∈ B, λ ∈ k and a ∈ A. We denote the image of d(b) in ΩDB/(A,ψA) again by d(b). We

also define a homomorphism of A-algebras

ρu : B → kM(D,ΩDB/(A,ψA)), b 7→ (d 7→ d(b)),

where the A-algebra structure on kM(D,ΩDB/(A,ψA)) is induced by ρA : A → kM(D,A) and the A-algebra

structure on ΩDB/(A,ψA) that is induced by the natural A-algebra structure on the polynomial algebra A[d(b) |
d ∈ D, b ∈ B].4

4Note that ρu is a homomorphism of A-algebras, since for a ∈ A and d ∈ D we have ρu(f(a))(d) = d(f(a)) = ψA(d⊗ a) = ρA(a)(d).
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(2) If D contains a group-like element 1 and ψA(1⊗ a) = a for all a ∈ A, then ΩDB/(A,ψA) becomes a B-algebra

via b 7→ 1(b), which we denote by ΩD,1B/(A,ψA).

Proposition 3.2. (1) Let h : A→ R be a commutative A-algebra,

Ψ: D ⊗k B → R

be a D-measuring from B to R, which extends the D-measuring ψA : D ⊗k A → A in the sense that
Ψ(d⊗ f(a)) = h(ψA(d⊗ a)) for all d ∈ D and all a ∈ A and let

P : B → kM(D,R)

be the homomorphism of A-algebras associated to Ψ via (2.1), where the A-algebra structure on kM(D,R)
is given by the composition kM(D,h) ◦ ρA. Then there exists a unique homomorphism of A-algebras
φ : ΩDB/(A,ψA) → R such that the diagram

kM(D,ΩDB/(A,ψA))

kM(D,φ)

((

B

ρu

OO

P
//
kM(D,R)

(3.6)

commutes, i.e. there is a bijection

AlgA(B, kM(D,R))
∼−→ AlgA(ΩDB/(A,ψA), R), P 7→ φ.(3.7)

The inverse sends φ ∈ AlgA(ΩDB/(A,ψA), R) to kM(D,φ) ◦ ρu.

(2) Assume that the k-coalgebra D contains a group-like element 1 and that ψA(1 ⊗ a) = a for all a ∈ A. Let
g : B → R be a commutative B-algebra. Then for every D-measuring

Ψ: D ⊗k B → R

from B to R, which fulfills Ψ(1⊗ b) = g(b) for all b ∈ B, which extends the D-measuring ψA : D⊗k A→ A
in the sense that Ψ(d⊗ f(a)) = g(f(ψA(d⊗ a))) for all d ∈ D and all a ∈ A, and which has

P : B → kM(D,R)

as associated homomorphism of A-algebras, the A-algebra structure on kM(D,R) being given by kM(D, g ◦
f) ◦ ρA, the unique homomorphism of A-algebras φ : ΩD,1B/(A,ψA) → R such that kM(D,φ) ◦ ρu = P is a

homomorphism of B-algebras. Therefore the bijection (3.7) restricts to a bijection

{P ∈ AlgA(B, kM(D,R)) | ev1 ◦P = g} ∼−→ AlgB(ΩD,1B/(A,ψA), R), P 7→ φ.(3.8)

The inverse sends φ ∈ AlgB(ΩD,1B/(A,ψA), R) to kM(D,φ) ◦ ρu.

Proof. Let P ∈ AlgA(B, kM(D,R)). We first define a homomorphism of A-algebras

(3.9) A[d(b) | d ∈ D, b ∈ B]→ R, d(b) 7→ P(b)(d).

This homomorphism vanishes on the ideal I as defined in definition 3.1. This is clear, the only point we are explaining
is the relation (3.3): Since P : B → kM(D,R) is a homomorphism of A-algebras and since the A-algebra structure
on kM(D,R) is given by kM(D,h) ◦ ρA, we obtain P(f(a)) = kM(D,h)(ρA(a)) for all a ∈ A, i.e. P(f(a))(d) =
h(ρA(a)(d)) = h(ψA(d⊗a)). Therefore the image of d(f(a)) is the same as that of ψA(d⊗a). Hence (3.9) gives rise
to a homomorphism of A-algebras φ : ΩDB/(A,ψA) → R, which makes the diagram (3.6) by definition commutative.

At the other side, any homomorphism of A-algebras φ : ΩDB/(A,ψA) → R is uniquely determined by its images on the

elements d(b) through the condition kM(D,φ) ◦ ρu = P. If conversely φ : ΩDB/(A,ψA) → R is a homomorphism of A-

algebras, then we define P : B → kM(D,R) by P(b)(d) := φ(d(b)) for all b ∈ B and d ∈ D. This is a homomorphism
of A-algebras, since P(f(a))(d) = φ(d(f(a))) = φ(ψA(d ⊗ a)) = h(ψA(d ⊗ a)) = kM(D,h)(ρA(a))(d) for all a ∈ A
and all d ∈ D.

Now let g : B → R be a commutative B-algebra and assume that D contains a group-like element 1. If P
fulfills P(b)(1) = g(b), then we also have φ(1(b)) = P(b)(1) = g(b) and therefore φ is the unique homomorphism of
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B-algebras φ : ΩD,1B/(A,ψ) → R that fulfills kM(D,φ) ◦ ρu = P. Conversely, for every homomorphism of B-algebras

φ : ΩD,1B/(A,ψA) → R, the composition kM(D,φ) ◦ ρu fulfills ev1 ◦kM(D,φ) ◦ ρu(b) = φ(1(b)) = g(b) for all b ∈ B. �

Remark 3.3. Generalized differentials can also be defined in a slightly different way: Assume that D contains a
group-like element 1 and let ψ : D⊗k A→ B be a unital D-measuring with associated homomorphism of k-algebras

ρ : A → kM(D,B). We define Ω̃D,1B/(A,ψ) as the quotient of A[db | d ∈ D, b ∈ B] by the ideal I generated by the

elements

d(b) + d(b′)− d(b+ b′),(3.10)

d(bb′)−
∑
(d)

d(1)(b) · d(2)(b
′),(3.11)

d(f(a))− 1(ψ(d⊗ a)),(3.12)

(d+ d′)(b)− d(b)− d′(b) and(3.13)

(λd)(b)− λ · d(b)(3.14)

for all b, b′ ∈ B, all d, d′ ∈ D, all a ∈ A and all λ ∈ k, and consider Ω̃D,1B/(A,ψ) as B-algebra via b 7→ 1b. The

homomorphism

ρu : B → kM(D, Ω̃D,1B/(A,ψ))(3.15)

will be defined as before by ρu(b)(d) = db for all b ∈ B and d ∈ D. If g : B → R is a commutative B-algebra and
Ψ: D⊗k B → R is a D-measuring from B to R, which extends the D-measuring ψ : D⊗k A→ B in the sense that
Ψ(d⊗ f(a)) = g(ψ(d⊗ a)) for all d ∈ D and all a ∈ A, which is unital with respect to 1 ∈ D, i.e. Ψ(1⊗ b) = g(b)
for all b ∈ B, and which has

P : B → kM(D,R)

as associated homomorphism of A-algebras (the A-algebra structure on kM(D,R) is given by kM(D, g) ◦ ρ), then

there exists a unique homomorphism of B-algebras φ : Ω̃D,1B/(A,ψ) → R such that the diagram

kM(D, Ω̃D,1B/(A,ψ))

kM(D,φ)

''

B

ρu

OO

P
//
kM(D,R)

(3.16)

commutes, i.e. the map

{P ∈ AlgA(B, kM(D,R)) | ev1 ◦P = g} → AlgB(Ω̃D,1B/(A,ψ), R), P 7→ φ(3.17)

is a bijection. The inverse sends φ ∈ AlgB(Ω̃D,1B/(A,ψ), R) to kM(D,φ) ◦ ρu.

Proof. Given P ∈ AlgA(B, kM(D,R)), we first define a homomorphism of B-algebras

A[d(b) | d ∈ D, b ∈ B]→ R, d(b) 7→ P(b)(d),

where A[d(b) | d ∈ D, b ∈ B] is considered as B-algebra via b 7→ 1(b). This homomorphism vanishes by assumption
on the ideal I as defined above. This is clear, the only point we are explaining is the relation (3.12): Since
P : B → kM(D,R) is a homomorphism of A-algebras, we have P(f(a)) = kM(D, g)(ρ(a)) for all a ∈ A, i.e.

P(f(a))(d) = g(ρ(a)(d)) = g(ψ(d⊗ a)) = Ψ(1⊗ ψ(d⊗ a)) = P(ψ(d⊗ a))(1).

Therefore the image of d(f(a)) is the same as that of 1(ψ(d ⊗ a)). Hence this homomorphism gives rise to a

homomorphism of B-algebras φ : Ω̃D,1B/(A,ψ) → R, which makes the diagram (3.16) by definition commutative. At

the other side, any homomorphism of B-algebras φ : Ω̃D,1B/(A,ψ) → R is uniquely determined by its images on the

elements d(b) through the condition kM(D,φ) ◦ ρu = P. �
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3.2. ×A-bialgebras and prolongations. We briefly recall the definition of ×A-bialgebras, which were introduced
by Sweedler (cf. [Swe74]), following closely the exposition of Masuoka and Yanagawa in [MY13].

Assumption 3.4. We assume that k is a field and let A be an A-ring that is projective as left A-module.

Its A-ring structure makes A into an A-A-bimodule. We consider the tensor product of the left A-module A with
itself over A (ignoring its right A-module structure, but denoting it by abuse of notation by A⊗A A). Its subset

A×A A :=
{ n∑
i=1

ai ⊗ bi ∈ A⊗A A
∣∣ n∑
i=1

aix⊗ bi =

n∑
i=1

ai ⊗ bix ∀x ∈ A
}
.

becomes an A-ring with respect to a 7→ a⊗ 1 for all a ∈ A.5 We assume in addition that A is an A-coalgebra with
respect to ∆: A → A⊗A A and ε : A → A.

Definition 3.5. We call A a ×A-bialgebra if the following hold:

(1) ∆(A) ⊆ A×A A,
(2) ∆: A → A⊗A A is a morphism of A-ring,
(3) ε(1) = 1 and
(4) ε(ab) = ε(aε(b)) for all a, b ∈ A.

If M and N are left A-modules (which we also consider as symmetric A-bimodules), then the tensor product
M ⊗A N becomes a left A-module with respect to the action given by

α ⇀ (m⊗ n) =
∑
(α)

(α(1) ⇀m)⊗ (α(2) ⇀ n)(3.18)

for all α ∈ A, m ∈M and n ∈ N . This is well defined because of condition (1) above and this action is associative
by condition (2). From condition (3) and (4) we obtain that A is a left A-module with respect to the action given
by

α ⇀ a := ε(αa)(3.19)

for all α ∈ A and a ∈ A.
We recall the following results of Masuoka and Yanagawa.

Proposition 3.6 ([MY13, Proposition 2.2]). Let A be a ×A-bialgebra. Then the category of left A-modules is a
monoidal category with respect to the product given by M ⊗A N for any two left A-modules M and N , considered
as left A-module via (3.18), and the unit given by A, with the left A-module structure given by (3.19). If A is
cocommutative as A-coalgebra, then this monoidal category is symmetric with symmetry given by the interchange of
factors.

If D is a k-bialgebra and A is a commutative D-module algebra, then the smash product A#D (cf. [Swe69, p.
153]) is an A-ring via A→ A#D, a 7→ a#1 and an A-coalgebra via the base extension of D from k to A.

Lemma 3.7 ([MY13, Lemma 2.3]). If D is a cocommutative k-bialgebra and A is a commutative D-module algebra,
then the smash product A#D is a ×A-bialgebra.

Under the hypothesis in lemma 3.7, the smash product A#D is a ×A-bialgebra and by proposition 3.6 the
category of left (A#D)-modules is a symmetric monoidal category with respect to the tensor product over A
considered as left A-module via (3.18) and the unit (3.19) with symmetry given by the interchange of factors. We
refer to this symmetric monoidal category as the category of left (A#D)-modules over A.

Remark 3.8. (1) Let m be a natural number or ∞ and Dm be the k-coalgebra defined in example 2.5 (1). By

this example, a higher derivation δA = (δ
(i)
A )i=0,...,m of length m gives rise to a D-measuring ψm : Dm⊗kA→

A from A to itself. Given a commutative higher differential ring (A, δA), a higher differential module
over (A, δA) is an A-module M together with a family of additive maps (∂(i) : M → M)i=0,...,m such that

∂(i)(am) =
∑
i=i1+i2

δ
(i1)
A (a)∂(i2)(m) for all a ∈ A and m ∈ M .6 A morphism from a higher differential

5A more systematic introduction of A×A A is given in [Swe74].
6Some authors require in addition that ∂(0) = idM .
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module (M,∂M ) to (N, ∂N ) over (A, δA) is a homomorphism of A-modules f : M → N such that ∂
(i)
N ◦ f =

f ◦ ∂(i)
M for all i = 0, . . . ,m. A higher differential module (M, (∂(i))i=0,...,m) is unital if ∂(0) = idM . If

m = ∞, then a higher differential module (M, (∂(i))i∈N) is iterative if ∂(i) ◦ ∂(j) =
(
i+j
i

)
∂(i+j) for all

i, j ∈ N. The category of higher differential modules over (A, δA) is monoidal, the product of (M,∂M ) and
(N, ∂N ) being the A-module M ⊗A N with higher derivation ∂ = (∂(i))i=0,...,m defined by ∂(i)(m ⊗ n) :=∑
i=i1+i2

∂
(i1)
M (m)⊗∂(i2)

N (n) for all m⊗n ∈M ⊗AN and all i ∈ {0, . . . ,m} and unit (A, δA). It is moreover

symmetric with respect to the interchange of factors. The unital (and/or iterative, in the case m =∞) higher
differential modules over (A, δA) form a full subcategory that is again symmetric monoidal. If m =∞, then
the symmetric monoidal category of left (A#D∞)-modules over A is isomorphic to the category of unital
iterative differential modules over (A, δA). Commutative monoids in the symmetric monoidal category of
left (A#D∞)-modules over A are commutative unital iterative differential (A, δA)-algebras.

(2) Let D = k[Ga] be the coordinate ring of the additive group scheme Ga over k. Let (A, δA) be a commutative
differential k-algebra. By example 2.5 (2) a D-module algebra structure ψA : D ⊗k A → A is associated
to δA. The smash product A#D is isomorphic to the ring of differential operators A[∂], which is the ring
consisting of elements of the form am∂

m + · · ·+ a1∂ + a0 with ai ∈ A and commutation relation defined by
∂a = a∂ + δA(a) for all a ∈ A. If A contains an element a such that δA(a) 6= 0, then the ring A[∂] is not
commutative. A differential module over (A, δA) is an A-module together with an additive map ∂M : M →M
such that ∂M (am) = δA(a)m+ a∂M (m) for all a ∈ A and m ∈M . A morphism from a differential module
(M,∂M ) to (N, ∂N ) is a homomorphism of A-modules f : M → N such that ∂N ◦ f = f ◦ ∂M . The category
of differential modules over (A, δA) is monoidal, the product of (M,∂M ) and (N, ∂N ) being given by the
tensor product M⊗AN with derivation ∂ defined by ∂(m⊗n) := ∂M (m)⊗n+m⊗∂N (n) and the unit being
(A, δA), cf. [vdPS03, Chapter 2]. It is furthermore symmetric with respect to the interchange of factors. The
symmetric monoidal category of differential modules over (A, δA) is isomorphic to the symmetric monoidal
category of left A#D-modules over A as defined above. Commutative monoids in the category of A[∂]-
modules over A are commutative differential (A, δA)-algebras, cf. definition 1.23.

(3) Let D be the coordinate ring k[Gm] ∼= k[σ, σ−1] of the multiplicative group scheme Gm over k. As noted
in example 2.5 (4), there is a bijection between the set of automorphisms of the k-algebra A and the set of
D-module algebra structures on A. Let σA be an automorphism of the k-algebra A and ψA : D ⊗k A → A
be the corresponding D-module algebra structure on A. The category of inversive difference modules over
(A, σA) consists of A-modules M together with an automorphism Σ of the abelian group M such that
Σ(am) = σA(a)Σ(m) for all a ∈ A and m ∈M . A morphism of inversive difference modules from (M,ΣM )
to (N,ΣN ) is a morphism of A-modules f : M → N such that ΣN ◦ f = f ◦ ΣM . The category of inversive
difference modules over (A, σA) is monoidal, the product of two inversive difference modules (M,ΣM ) and
(N,ΣN ) being the A-module M ⊗A N with the automorphism Σ defined by Σ(m ⊗ n) := ΣM (m) ⊗ ΣN (n)
for all m ⊗ n ∈ M ⊗A N and the unit being (A, σA). It is symmetric with respect to the interchange of
factors. The symmetric monoidal category of inversive difference modules over (A, σA) is isomorphic to the
category of left (A#D)-modules over A.

(4) Let D be the k-subbialgebra k[σ] of k[Gm] ∼= k[σ, σ−1]. Then commutative D-module algebras are in bijection
with commutative k-algebras A equipped with an endomorphism σA, cf. example 2.5 (3). Let (A, σA)
be a commutative difference algebra over k and ψA : D ⊗k A → A be the associated D-module algebra
structure on A. The category of difference modules over (A, σA) consists of A-modules M equipped with
an endomorphism Σ of the abelian group M such that Σ(am) = σA(a)Σ(m) for all a ∈ A and m ∈M and
morphisms defined as in the case of inversive difference modules. This category is a symmetric monoidal
category in a similar way as the category of inversive difference modules. It is isomorphic to the symmetric
monoidal category of left (A#D)-modules over A.

Proposition 3.9. Let I be a directed set and γ : I × I → I be a map such that for all i, j ∈ I we have i ≤ γ(i, j)
and j ≤ γ(i, j). Let k be a field and let D be a cocommutative k-bialgebra that is the direct limit of a directed system
of k-subcoalgebras (Di)i∈I such that DiDj ⊆ Dγ(i,j) for all i, j ∈ I and such that every Di contains the unit 1 of
D. Let further ψA : D ⊗k A→ A be a D-module algebra structure on A and denote the Di-measurings from A to
itself induced by ψA by ψA,i : Di ⊗k A→ A.
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(1) Then the B-algebras
(

ΩDi,1B/(A,ψA,i)

)
i∈I

form a direct system and there is an isomorphism of B-algebras

ΩD,1B/(A,ψA)
∼= lim−→

i∈I
ΩDi,1B/(A,ψA,i)

.(3.20)

Furthermore, for all i, j ∈ I the k-coalgebra Di measures Ω
Dj ,1

B/(A,ψA,j)
to Ω

Dγ(i,j),1

B/(A,ψA,γ(i,j))
and ΩD,1B/(A,ψA)

becomes a D-module algebra. Moreover, ΩD,1B/(A,ψA) is a commutative monoid in the symmetric monoidal

category of left (A#D)-modules over A with respect to the (A#D)-module structure

Ψ: (A#D)⊗ ΩD,1B/(A,ψA) → ΩD,1B/(A,ψA).

(2) For every commutative monoid (S, ψS : (A#D) ⊗ S → S) in the category of left (A#D)-modules over A
and every homomorphism of A-algebras g : B → S there exists a unique homomorphism of monoids of left
(A#D)-modules over A

G : (ΩD,1B/(A,ψA),Ψ)→ (S, ψS)

such that the diagram

B

g

##

ρ0 // ΩD,1B/(A,ψA)

G

��

S

commutes, where ρ0 is the B-algebra structure of ΩD,1B/(A,ψA). This induces a bijection between the set of

homomorphisms of monoids of left (A#D)-modules over A from (ΩD,1B/(A,ψA),Ψ) to (S, ψS) and the set of

homomorphisms of A-algebras from B to S.

The commutative monoid (ΩD,1B/(A,ψA),Ψ) in the category of left (A#D)-modules over A is unique with

this property.

Proof. For i ∈ N we denote by Ii the ideal of A[db | d ∈ Di, b ∈ B] that is generated by the elements

d(b) + d(b′)− d(b+ b′),

d(bb′)−
∑
(d)

d(1)(b) · d(2)(b
′),

d(f(a))− ψA,i(d⊗ a),

(d+ d′)(b)− d(b)− d′(b) and

(λd)(b)− λ · d(b)

for all d, d′ ∈ Di, b, b
′ ∈ B, λ ∈ k and a ∈ A. Then ΩDi,1B/(A,ψA,i)

∼= A[db | d ∈ Di, b ∈ B]/Ii. If i ≤ j are elements

of I, then there is an injection from A[db | d ∈ Di, b ∈ B] into A[db | d ∈ Dj , b ∈ B] and the image of Ii under

this injection is contained in Ij . Therefore we obtain an injection ΩDi,1B/(A,ψA,i)
→ Ω

Dj ,1

B/(A,ψA,j)
and the isomorphism

(3.20). We consider the morphism of k-modules

Di ⊗k A[db | d ∈ Dj , b ∈ B]→ Ω
Dγ(i,j),1

B/(A,ψA,γ(i,j))

d⊗ a(d′2b2) . . . (d′nbn) 7→
∑
(d)

d(1)(f(a)) · (d(2)d
′
2)(b2) . . . (d(n)d

′
n)(bn),

using Sweedler notation, for all a ∈ A, b2, . . . , bn ∈ B, d ∈ Di and d′2, . . . , d
′
n ∈ Dj . Since the image of Di ⊗k Ij is

zero in Ω
Dγ(i,j),1

B/(A,ψA,γ(i,j))
, we obtain a morphism of k-modules

Ψ̃i,j : Di ⊗k Ω
Dj ,1

B/(A,ψA,j)
→ Ω

Dγ(i,j),1

B/(A,ψA,γ(i,j))
,
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which is by construction a Di-measuring from Ω
Dj ,1

B/(A,ψA,j)
to Ω

Dγ(i,j),1

B/(A,ψA,γ(i,j))
. By the universal property of the direct

limit

D ⊗k ΩD,1B/(A,ψA)
∼= lim−→

i∈I
Di ⊗k lim−→

j∈I
Ω
Dj ,1

B/(A,ψA,j)
∼= lim−→
i,j∈I×I

(Di ⊗k Ω
Dj ,1

B/(A,ψA,j)
)

we obtain a morphism Ψ̃: D ⊗k ΩD,1B/(A,ψA) → ΩD,1B/(A,ψA) such that the following diagram commutes

Di ⊗k Ω
Dj ,1

B/(A,ψA,j)� _

��

Ψ̃i,j
// Ω
Dγ(i,j),1

B/(A,ψA,γ(i,j))� _

��

D ⊗k ΩD,1B/(A,ψA)

Ψ̃ // ΩD,1B/(A,ψA).

The morphism Ψ̃ is a D-measuring from ΩD,1B/(A,ψA) to itself, since the Ψ̃i,j are Di-measurings. By definition Ψ̃

makes ΩD,1B/(A,ψA) also into a left D-module. We extend this to a left (A#D)-module structure

Ψ: (A#D)⊗ ΩD,1B/(A,ψA) → ΩD,1B/(A,ψA), (a#d)⊗ ω 7→ a · Ψ̃(d⊗ ω).

Let S be a commutative monoid in the symmetric monoidal category of left (A#D)-modules over A with (A#D)-
module structure given by ψS : (A#D) ⊗ S → S. We denote the A-algebra structure on S by h : A → S. Let
g : B → S be a homomorphism of A-algebras. We define

G : ΩD,1B/(A,ψA) → S

by

G(a1d2(b2) . . . dn(bn)) := h(a1) · ψS((1#d2)⊗ g(b2)) · . . . · ψS((1#dn)⊗ g(bn))

for all a1 ∈ A, all b2, . . . bn ∈ B and all d2, . . . , dn ∈ D. If furthermore a ∈ A and d ∈ D, then we have

G (Ψ((a#d)⊗ a1d
′
2(b2) . . . d′n(bn)))

= G
(
a
∑
(d)

d(1)(f(a1))(d(2)d
′
2)(b2) . . . (d(n)d

′
n)(bn)

)
= h(a)

∑
(d)

ψS((1#d(1))⊗ g(f(a1))) · ψS((1#d(2)d
′
2)⊗ g(b2)) . . . ψS((1#d(n)d

′
n)⊗ g(bn))

= h(a)
∑
(d)

ψS((1#d(1))⊗ h(a1)) · ψS(1#d(2) ⊗ ψS((1#d′2)⊗ g(b2))) . . . ψS((1#d(n))⊗ ψS((1#d′n)⊗ g(bn)))

= h(a) · ψS((1#d)⊗ h(a1) · ψS((1#d′2)⊗ g(b2)) . . . ψS((1#d′n)⊗ g(bn)))

= ψS((a#d)⊗G(a1d
′
2(b2) . . . d′n(bn))),

so that G is a morphism of left (A#D)-modules. By definition G is multiplicative and respects the units. Therefore

G is a morphism of monoids of left (A#D)-modules over A. In order to show that G : ΩD,1B/(A,ψA) → S is unique,

let G′ : ΩD,1B/(A,ψA) → S be another morphism of monoids of left (A#D)-modules over A such that G′ ◦ ρ0 = g.

Then we have G′(a · d(b)) =G′(Ψ((a#d)⊗ 1b)) = ψS((a#d)⊗G′(1b)) = ψS((a#d)⊗ g(b)) = ψS((a#d)⊗G(1b)) =
G(Ψ((a#d) ⊗ 1b)) = G(a · d(b)) for all a ∈ A, all b ∈ B and all d ∈ D, and therefore G′ = G. If conversely

G : ΩD,1B/(A,ψA) → S is a morphism of monoids of left (A#D)-modules over A, then G ◦ ρ0 is a morphism of A-

algebras from B to S.

The uniqueness of (ΩD,1B/(A,ψA),Ψ) follows from its universal property. �

Remark 3.10. (1) If D is a k-bialgebra, then the finitely generated k-subcoalgebras of D form a directed set
and the conditions at the beginning of the last proposition can always be satisfied.

(2) Let I be the set N of natural numbers with the natural partial order.
(a) The free k-module Di := k〈∂0, . . . , ∂i〉 is a k-subcoalgebra of D = k[Ga] = k[∂] for all i ∈ N, cf.

example 2.5 (2). We recover proposition 1.24 from proposition 3.9, cf. example 3.12 for details.
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(b) The free k-module Di := k〈σ0, . . . , σi〉 is a k-subcoalgebra of D = k[σ] for all i ∈ N, where σj are
group-like elements for all j ∈ N. We recover proposition 1.32 from proposition 3.9, cf. example 3.14
for details.

(c) The k-bialgebra k〈θ(i) | i ∈ N〉 defined in example 2.5 (1) is the direct limit of its k-subcoalgebras
(k〈θ(0), . . . , θ(i)〉)i∈N. We recover proposition 1.22 from proposition 3.9, cf. example 3.11 for details.

(d) More generally, any iterative Hasse-Schmidt system D = (Di)i∈N in the sense of Moosa and Scanlon,
cf. [MS11, Definition 2.2], gives rise to a direct system of cocommutative k-coalgebras (Di(k)∗)i∈N such
that D := lim−→i∈NDi(k)∗ is a k-bialgebra, cf. [Hei13b].

3.3. Examples.

3.3.1. Derivations and higher derivations.

Example 3.11. Let m be a natural number and let Dm := k〈θ(0), . . . , θ(m)〉 be the k-coalgebra defined in example 2.5
(1). If ψm : Dm ⊗k A→ A is a Dm-measuring from A to itself, then we obtain

ΩDmB/(A,ψm) = A[θ(0)(b), . . . , θ(m)(b) | b ∈ B]/I,

where I is the ideal generated by

θ(i)(b+ b′)− θ(i)(b)− θ(i)(b′), θ(i)(bb′)−
∑

i1+i2=i

θ(i1)(b)θ(i2)(b′) and θ(i)(f(a))− ψm(θ(i) ⊗ a)

for all b, b′ ∈ B, all a ∈ A and all i = 0, . . . ,m. A Dm-measuring ψm : Dm ⊗k A→ A from A to itself is equivalent

to a higher derivation δA = (δ
(0)
A , . . . , δ

(m)
A ) on A of length m, defined by δ

(i)
A (a) := ψm(θ(i)⊗a) for all i ∈ {0, . . . ,m}

and all a ∈ A.
The k-coalgebra Dm contains the group-like element θ(0). A higher derivation δA = (δ

(0)
A , . . . , δ

(m)
A ) of length m

on A such that δ
(0)
A (a) = a for all a ∈ A induces a Dm-measuring ψm : Dm ⊗k A → A from A to itself defined by

ψm(θ(i) ⊗ a) = δ
(i)
A (a) for all i ∈ {0, . . . ,m} and all a ∈ A, which is unital with respect to the group-like element

θ(0) ∈ Dm. The B-algebra structure on Ω
Dm,θ

(0)

B/(A,ψm) is given by b 7→ θ(0)(b) and Ω
Dm,θ

(0)

B/(A,ψm) is isomorphic to the

B-algebra HSmB/(A,δA) defined by Rosen, cf. definition 1.15. The bijection (3.7) specializes in this case to (1.12).

If the Dm-measuring ψm : Dm ⊗k A → A is trivial, i.e. ψm(θ(i) ⊗ a) = a · δi,0 for all i ∈ {0, . . . ,m}, then

Ω
Dm,θ

(0)

B/(A,ψm) specializes to the B-algebra HSmB/A defined by Vojta, cf. definition 1.7, and the bijection (3.7) specializes

to (1.6) (in the case where m is a natural number, the case m =∞ is similar).

Let δA = (δ
(i)
A )i∈N be a unital iterative higher derivation on A, D∞ := k〈θ(i) | i ∈ N〉 and ψA : D∞⊗kA→ A be the

corresponding D∞-module algebra structure on A, cf. example 2.5 (1). Then the D∞-module algebra (Ω
D∞,θ

(0)

B/(A,ψA),Ψ)

is isomorphic to the unital iterative differential ring (HS∞B/(A,δA), d) defined by Rosen, cf. definition 1.18 and

lemma 1.21. By remark 3.8 (1) commutative monoids in the symmetric monoidal category of (A#D∞)-modules
over A are commutative unital iterative higher differential (A, δA)-algebras and we recognize proposition 1.22 as a
corollary of proposition 3.9.

Example 3.12. If m = 1 in example 3.11, then

D1 = k〈θ(0), θ(1)〉 =: k〈1, ∂〉.

Let ψA : D1 ⊗k A → A be a D1-measuring from A to itself, which is equivalent to a pair (σA, δA) consisting of an
endomorphism σA of the k-algebra A and a k-derivation δA : A → A, where A is considered as A-algebra via σA
(i.e. δA(aa′) = δA(a)σA(a′) +σA(a)δA(a′)). The homomorphism of k-algebras ρA associated to ψA is then given by
the homomorphism A→ A[t]/(t2) that sends a ∈ A to σA(a) + δA(a)t. We have

ΩD1

B/(A,ψA) = A[1(b), ∂(b) | b ∈ B]/I,
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where I is the ideal generated by

1(b+ b′)− 1(b)− 1(b′), ∂(b+ b′)− ∂(b)− ∂(b′),

1(bb′)− 1(b)1(b′), ∂(bb′)− 1(b)∂(b′)− ∂(b)1(b′),

1(f(a))− ψA(1⊗ a), ∂(f(a))− ψA(∂ ⊗ a)

for all a ∈ A and b ∈ B.
Let h : A → R be a commutative A-algebra. Then kM(D1, R) is isomorphic to R[t]/(t2), which we consider as

A-algebra via the homomorphism kM(D1, h) ◦ ρA, which sends a ∈ A to h(σA(a)) + h(δA(a))t. In this case the
bijection (3.7) takes the form

AlgA(B,R[t]/(t2))
∼−→ AlgA(ΩD1

B/(A,ψA), R), P 7→ φ.(3.21)

The data specified by an element φ ∈ AlgA(ΩD1

B/(A,ψA), R), or in view of (3.21) equivalently by an element P ∈
AlgA(B,R[t]/(t2)), is given by a homomorphism of k-algebras Σ: B → R and a k-derivation ∂ : B → R, where R
is considered as B-algebra via Σ: B → R (i.e. ∂(bb′) = ∂(b)Σ(b′) + Σ(b)∂(b′)), such that the diagrams

A
σA //

f

��

A

h
��

B
Σ // R

and A
δA //

f

��

A

h
��

B
∂ // R

commute.

Let A
(f,δ)−−−→ B be a 1-differential kernel in the sense of Johnson (cf. subsection 1.8). We define the D1-measuring

ψ : D1 ⊗k A → B by ψ(1 ⊗ a) := f(a) and ψ(∂ ⊗ a) := δ(a) and let ρ : A → B[t]/(t2), a 7→ f(a) + δ(a)t be the

associated homomorphism of k-algebras. The homomorphism of A-algebras ρu : B → Ω̃D1,1
B/(A,ψ) (cf. (3.15)) provides

a prolongation of (f, δ) consisting of the ring homomorphism

g : B → Ω̃D1,1
B/(A,ψ), b 7→ 1b (= ρu(b)(1))

and the derivation

∂ : B → Ω̃D1,1
B/(A,ψ), b 7→ ∂b (= ρu(b)(∂)).

This prolongation is universal in the sense that for any prolongation B
(g′,∂′)−−−−→ C ′ there is a homomorphism of

B-algebras h : ΩD1,1
B/(A,ψ) → C ′ such that g′ = h ◦ g and ∂′ = h ◦ ∂. In fact, if (g′, ∂′) is such a prolongation, then we

have g′ ◦ δ = ∂′ ◦ f and therefore

P ′ : B → kM(D1, C
′) (∼= C ′[t]/(t2)), b 7→ g′(b) + ∂′(b)t

is a homomorphism of A-algebras, when we consider kM(D1, C
′) ∼= C ′[t]/(t2) as A-algebra via kM(D1, g

′) ◦ ρ, and
satisfies ε◦P ′ = g′, where ε : C ′[t]/(t2)→ C is the homomorphism of C-algebras defined by ε(t) := 0. By remark 3.3

there exists a unique homomorphism of B-algebras φ : Ω̃D1,1
B/(A,ψ) → C ′ such that P ′ = kM(D1, φ) ◦ ρu. This means

that g′ = φ ◦ f and ∂′ = φ ◦ δ. Therefore proposition 1.36 becomes a corollary of remark 3.3.
The k-coalgebra D1 contains the group-like element 1 = θ(0). If ψA(1⊗ a) = a for all a ∈ A, then the B-algebra

ΩD1,1
B/(A,ψA) is isomorphic to the quotient of B[∂(b) | b ∈ B] by the ideal generated by

∂(b+ b′)− ∂(b)− ∂(b′), ∂(bb′)− b∂(b′)− b′∂(b) and ∂(f(a))− f(ψA(∂ ⊗ a))

for all b, b′ ∈ B and all a ∈ A, which is isomorphic to the B-algebra SymB(Ω1
B/Z)/If◦δA as defined in subsection 1.2,

cf. remark 1.3.
Now assume that R is a commutative B-algebra via g : B → R. Then the bijection (3.8) takes the special form

{P ∈ AlgA(B,R[t]/(t2)) | ε ◦ P = g} ∼−→ AlgB(SymB(Ω1
B/Z)/If◦δA , R), P 7→ φ,(3.22)

where ε : R[t]/(t2) → R is the homomorphism of R-algebras defined by ε(t) = 0. An element P : B → R[t]/(t2) of
the set on the left hand side of (3.22) is given by P (b) = g(b) +∂(b)t with ∂ ∈ DerδA(B,R). We recover lemma 1.2.
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If the D1-measuring ψA : D1 ⊗k A → A is trivial (i.e. ψA(1 ⊗ a) = a and ψA(∂ ⊗ a) = 0 for all a ∈ A),

then the B-algebra ΩD1,1
B/(A,ψA) is isomorphic to SymB(Ω1

B/A), where Ω1
B/A is the module of Kähler differentials, cf.

subsection 1.1, and we recover (1.2) from (3.22).
The bijections (3.21) and (3.22) appear as the middle horizontal arrows in the diagram in remark 1.20 (2).
Let (A, δA) be a commutative differential ring that is a k-algebra and let D := k[Ga] be the coordinate ring

of the additive group scheme Ga. Then A is a D-module algebra with respect to ψA : D ⊗k A → A defined by
ψA(∂i ⊗ a) := δiA(a) for all a ∈ A and all i ∈ N. As noted in remark 3.8 (2), the symmetric monoidal category of
differential modules over (A, δA) is isomorphic to the symmetric monoidal category of left (A#D)-modules over A
with respect to the product defined in (3.18) and commutative monoids in the category of left (A#D)-modules are
commutative differential (A, δA)-algebras. Therefore we recognize proposition 1.24 as a corollary of proposition 3.9.

3.3.2. Endomorphisms.

Example 3.13. Let D := k〈1, σ〉 be the free k-module generated by two elements 1 and σ with the k-coalgebra
structure defined by ∆(1) := 1⊗ 1, ε(1) = 1, ∆(σ) := σ ⊗ σ and ε(σ) = 1. A unital D-measuring ψA : D⊗k A→ A
from A to itself is the same as an endomorphism σA of the k-algebra A defined by σA(a) := ψA(σ ⊗ a). The

B-algebra ΩD,1B/(A,ψA) has the form

ΩD,1B/(A,ψA) = A[1(b), σ(b) | b ∈ B]/I,

where I is the ideal generated by the elements

σ(b+ b′)− σ(b)− σ(b′), σ(bb′)− σ(b)σ(b′), σ(f(a))− ψA(σ ⊗ a)

1(b+ b′)− 1(b)− 1(b′), 1(bb′)− 1(b)1(b′), 1(f(a))− a
for all b, b′ ∈ B and all a ∈ A. It is isomorphic to

(B ⊗Z B)/J,

where J is the ideal generated by the elements 1⊗ f(a)− σA(a)⊗ 1 for all a ∈ A, via the isomorphism

(B ⊗Z B)/J → ΩDB/(A,ψA), b1 ⊗ b2 7→ b1σ(b2).

We generalize the previous example:

Example 3.14. For n ∈ N, let Dn := k〈σ0, σ1 . . . σn〉 be the free k-module with basis {σ0, σ1, . . . , σn} with the
k-coalgebra structure defined by

∆(σi) := σi ⊗ σi and ε(σi) = 1(3.23)

for all i = 0, . . . , n. We denote the element σ0 ∈ Dn also by 1. Let ψn : Dn ⊗k A→ A be a Dn-measuring from A
to itself and (σ̃i)i=0,...,n be the family of endomorphisms σ̃i : A→ A defined by σ̃i(a) := ψn(σi ⊗ a) for i = 0, . . . , n.

The B-algebra ΩDn,1B/(A,ψn) has the form

ΩDn,1B/(A,ψn) = A[σ0(b), σ1(b), . . . , σn(b) | b ∈ B]/I,

where I is the ideal generated by the elements

σi(b+ b′)− σi(b)− σi(b′), σi(bb′)− σi(b)σi(b′) and σi(f(a))− ψn(σi ⊗ a).

for all b, b′ ∈ B, all a ∈ A and all i ∈ {0, . . . , n}.
In the proof of proposition 1.32 rings Bn are defined as

Bn := B ⊗A σ̃B ⊗A · · · ⊗A σ̃nB,

cf. (1.18). There is an isomorphism of A-algebras

Bn
∼−→ ΩDn,1B/(A,ψn), (b0 ⊗ a0)⊗ (b1 ⊗ a1)⊗ · · · ⊗ (bn ⊗ an) 7→ σ0(b0) · a0 · σ1(b1) · a1 · · · · · σn(bn) · an(3.24)

with inverse given by

ΩDn,1B/(A,ψn) → Bn, σi(b) 7→ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1)⊗ (b⊗ 1)⊗ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1),

for all i = 0, . . . , n and b ∈ B, where b⊗ 1 is in the factor σ̃iB of Bn.
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The k-bialgebra D = k[σ] with k-coalgebra structure defined by (3.23) for all i ∈ N is the direct limit of the
k-subcoalgebras (Di)i∈N, which fulfill DiDj ⊆ Di+j for all i, j ∈ N. Let (A, σA) be a commutative difference ring
and ψA : D ⊗k A → A, σi ⊗ a 7→ σiA(a) be the associated D-module algebra structure on A, cf. example 2.5 (3).
As noted in remark 3.8 (4), the symmetric monoidal category of difference modules over (A, σA) is isomorphic to
the symmetric monoidal category of left (A#D)-modules over A. Therefore the category of commutative difference
(A, σA)-algebras is the isomorphic to the category of commutative monoids in the category of left (A#D)-modules

over A. The isomorphisms (3.24) induce an isomorphism of difference (A, σA)-algebras between ΩD,1B/(A,ψA) and

the difference (A, σA)-algebra [σ]AB defined in proposition 1.32 and we recognize this proposition as a corollary of
proposition 3.9.

3.3.3. Skew-derivations.

Example 3.15. Let D be the free k-module k〈1, ∂, σ〉 with basis {1, ∂, σ} and k-coalgebra structure defined by

∆(1) := 1⊗ 1, ε(1) := 1, ∆(σ) := σ ⊗ σ, ε(σ) := 1, ∆(∂) := ∂ ⊗ 1 + σ ⊗ ∂, ε(∂) := 0.(3.25)

Then defining a D-measuring from A to itself amounts to give an endomorphism σA of the k-algebra A and a
σA-derivation ∂A on A, i.e. a morphism of k-modules ∂A : A → A such that ∂A(aa′) = ∂A(a)a′ + σA(a)∂A(a′) for
all a, a′ ∈ A.

The approach to skew-derivation taken by André in [And01] is different. Instead of working with genuine skew-
derivations, he considers modules over a commutative difference ring (A, σA) as sesqui-modules with respect to σA,
equipped with a normal derivation.

3.3.4. Iterative q-difference operators. Hardouin introduced iterative q-difference operators in [Har10]. We do not
give a detailed description of the generalized differentials in this case but only mention that commutative rings with
iterative q-difference operators can be described as commutative D-module algebras for a cocommutative bialgebra
D as shown by Masuoka and Yanagawa, cf. [MY13]. Therefore our construction and propositions apply also in this
case.

3.4. Functorial properties.

3.4.1. Let v : B → B′ be a morphism of A-algebras. Then the morphism of A-algebras

A[db | d ∈ D, b ∈ B]→ A[db′ | d ∈ D, b′ ∈ B′], ad(b) 7→ ad(v(b))

induces a morphism of A-algebras

ΩDB/(A,ψA) → ΩDB′/(A,ψA).(3.26)

If D contains a group-like element 1 and ψA(1⊗ a) = a for all a ∈ A, then (3.26) is a morphism of B-algebras

ΩD,1B/(A,ψA) → ΩD,1B′/(A,ψA),

where the B-algebra structure on ΩD,1B′/(A,ψA) is obtained from its B′-algebra structure and v : B → B′. The diagram

kM(D,ΩDB/(A,ψA))
//
kM(D,ΩDB′/(A,ψA))

B

ρu

OO

v // B′

ρu

OO

commutes, where the upper horizontal arrow is induced by (3.26). These morphisms induce a morphism of B′-
algebras

vB′/B/A : ΩD,1B/(A,ψA) ⊗B B
′ → ΩD,1B′/(A,ψA).
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3.4.2. Let u : A → A′ be a morphism of commutative k-algebras and f ′ : A′ → B′ be a commutative A′-algebra.
Let ψA be a D-measuring from A to itself and ψA′ be a D-measuring from A′ to itself extending ψA, i.e. such that
the diagram

D ⊗k A′
ψA′ // A′

D ⊗k A

idD ⊗u

OO

ψA // A

u

OO

commutes.
We consider the morphism of A-algebras A[db | d ∈ D, b ∈ B] → A′[db | d ∈ D, b ∈ B] that is induced by u.

It sends the element d(f ′(u(a))) − ψA(d ⊗ a) to d(f ′(u(a))) − u(ψA(d ⊗ a)) = d(f ′(u(a))) − ψA′(d ⊗ u(a)), which
vanishes in ΩDB/(A,ψA). Therefore we obtain a morphism of A-algebras

uB/A′/A : ΩDB/(A,ψA) → ΩDB/(A′,ψA′ ).

3.4.3. Given a diagram of commutative k-algebras

B
v // B′

A

f

OO

u // A′

f ′

OO

and two D-measurings
ψA : D ⊗k A→ A and ψA′ : D ⊗k A′ → A′,

that are unital with respect to a group-like element 1 ∈ D, the diagram

kM(D,ΩD,1B/(A,ψA) ⊗B B
′)
kM(D,vB′/B/A)

//
kM(D,ΩD,1B′/(A,ψA))

kM(D,uB′/A′/A)
//
kM(D,ΩD,1B′/(A′,ψA′ )

)

kM(D,ΩD,1B/(A,ψA))⊗B B
′

OO

B
v //

ρu⊗1
OO

B′
idB′ //

ρu

OO

B′

ρu

OO

commutes.
These are analogues of statements in [Gro64, Chapitre 0, 20.5].

4. Review of prolongation spaces

In this section we review the tangent bundle as well as several constructions of jet and prolongation spaces due
to Buium, Rosen and Vojta.

Notation: Let A be a commutative ring and f : A→ B be a commutative A-algebra.

4.1. The tangent bundle. The tangent bundle of X = SpecB over Y = SpecA is by definition the B-scheme

TX/Y := Spec SymB(Ω1
B/A),

where Ω1
B/A is the module of Kähler differentials as defined in subsection 1.1, cf. [Gro67, §16.5]. We denote TX/Y

also by TB/A.

4.2. Relative tangent bundle. Given a derivation δA : A → A, we define the relative tangent bundle7 of X =
SpecB over Y = SpecA with respect to δA as

TX/(Y,δA) := Spec SymB(Ω1
B/Z)/IδA ,

where IδA is the ideal of SymB(Ω1
B/Z) generated by d f(a)− f(δA(a)) for all a ∈ A as in subsection 1.2.

7This is maybe not a standard notation.
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4.3. Vojta’s scheme of jet differentials. Vojta defines “schemes of jet differentials” for arbitrary schemes in
[Voj07, §4]. Here we review his construction in the case of affine schemes.

Definition 4.1. The scheme of m-jet differentials of SpecB over SpecA is defined as the B-scheme

Jm(B/A) := Spec HSmB/A,

where HSmB/A is the B-algebra of divided differentials (cf. definition 1.7).

Theorem 4.2 ([IK03, 2.8], [Voj07, Theorem 4.5]). The scheme Jm(B/A) represents the functor from A-schemes
to sets defined by

Z 7→ SchA(Z ×A A[t]/(tm+1),SpecB)

in the case m ∈ N and by

Z 7→ SchA(Z×̂AAJtK),SpecB)

in the case m =∞, i.e. for every A-scheme Z there are isomorphisms

SchA(Z ×A A[t]/(tm+1),SpecB) ∼= SchA(Z, Jm(B/A))(4.1)

and

SchA(Z×̂AAJtK),SpecB) ∼= SchA(Z, J∞(B/A)),

respectively.

Remark 4.3. (1) Ishii and Kollar call Jm(B/A) the scheme of m-jets of X = SpecB and J∞(B/A) the space
of arcs of X.

(2) By remark 1.8 the B-scheme J1(B/A) is isomorphic to the tangent bundle TB/A as defined in subsection 4.1.

4.4. Buium’s jet spaces. Buium defines jet spaces in [Bui93, 9. Appendix]. We briefly recall his definition.
Let A be a commutative Q-algebra and δA : A→ A be a derivation. We define Am := A[t]/(tm+1), Y := SpecA

and Y (m) := SpecA[t]/(tm+1). We denote by p1 : Y (m) → Y the morphism induced by the inclusion

A→ Am, a 7→ a.

and by p2 : Y (m) → Y the morphism induced by the homomorphism

e : A→ Am, a 7→
m∑
i=0

δiA(a)

i!
ti.(4.2)

Given an A-scheme X, we consider the functor

G : SchA → Set, Z 7→ SchA(Z ×Y Y (m), X),

where Y (m) in the fibre product is considered as Y -scheme via p1 and Z×Y Y (m) is considered as Y -scheme via the

composition Z×Y Y (m) → Y (m) p2−→ Y . The functor G is representable, i.e. there exists an A-scheme jetm(X/Y, δA)
such that for every A-scheme Z there is a bijection

SchA(Z, jetm(X/Y, δA)) ∼= SchA(Z ×Y Y (m), X).(4.3)

Remark 4.4. If the derivation δA on A is trivial, i.e. if δA(a) = 0 for all a ∈ A, then Buium’s jet spaces
jetm(X/Y, δA) coincides with Vojta’s scheme of m-jet differentials Jm(B/A).

4.5. Rosen’s prolongation spaces. Rosen defines prolongation spaces of schemes in [Ros08]. We recall his
definition in the affine case.

Definition 4.5. Let A be a commutative ring with higher derivation δA = (δ
(i)
A )i∈N and let X = SpecB be an affine

A-scheme. The m-th prolongation of X is defined as the B-scheme

Pm(X/(A, δA)) := Spec HSmB/(A,δA) .

The B-schemes (Pm(X, (A, δA)))m∈N form an inverse system and we denote the inverse limit by

P∞(X/(A, δA)) := lim←−
m∈N

Pm(X/(A, δA)).
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Proposition 4.6 ([Ros08, Theorem 2.4]). Let A be a commutative ring with higher derivation δA = (δ
(i)
A )i∈N and

let X = SpecB be an affine A-scheme. For all m ∈ N the scheme Pm(X/(A, δA)) represents the functor

SchA → Set

Z 7→ SchA((Z ×A SpecAm)∼, X),

where (Z ×A SpecAm)∼ is an A-scheme via

(Z ×A SpecAm)∼ → SpecAm
e−→ SpecA,

where e : SpecAm → SpecA is the morphism induced by the ring homomorphism

e : A→ Am, a 7→
m∑
i=0

δ
(i)
A (a)ti,

i.e. for every A-scheme Z there is a bijection

SchA(Z,Pm(X/(A, δA))) ∼= SchA((Z ×A SpecAm)∼, X).(4.4)

Proof. Let Z = SpecR be an affine A-scheme. Then using (1.12) we have

SchA(Z,Pm(X/(A, δA))) = Pm(X/(A, δA))(R)

= (Spec HSmB/(A,δA))(R)

= AlgA(HSmB/(A,δA), R)

∼= AlgA(B, R̃m)

∼= AlgA(B,R⊗A Ãm)

= SchA((Z ×A SpecAm)∼, X).

�

Remark 4.7. (1) If A is a commutative Q-algebra, δ
(1)
A : A → A is a derivation and δA := (

(δ
(1)
A )i

i! )i∈N is the
induced higher derivation on A, then the prolongation space Pm(X/(A, δA)) as defined by Rosen coincides

with the jet schemes jetm(X/Y, δ
(1)
A ) defined by Buium, where Y := SpecA. The defining isomorphism

(4.3) corresponds to (4.4).

(2) If m = 1 and if δA = (δ
(0)
A , δ

(1)
A ) is given by δ

(0)
A = idA and a derivation δ

(1)
A on A, then by remark 1.16 (2) the

prolongation space P1(X/(A, δA)) ∼= jet1(X/Y, δ
(1)
A ) is isomorphic to the relative tangent bundle T

X/(Y,δ
(1)
A )

as defined in subsection 4.2, where Y := SpecA.

Example 4.8. Let m = 1, δA = (idA, δ
(1)
A ), X = SpecA[x1, . . . , xn]/(Q1, . . . , Qs) with polynomials Qi ∈ A[x1, . . . , xn]

and R be a commutative A-algebra. Then we have

P1(X/(A, δA))(R) ∼= AlgA(A[x1, . . . , xn]/(Q1, . . . , Qs), R̃1).(4.5)

A homomorphism of A-algebras from A[x1, . . . , xn]/(Q1, . . . , Qs) to R̃1 is given by the images r
(0)
1 + r

(1)
1 t, . . . , r

(0)
n +

r
(1)
n t of x1, . . . , xn in R̃1 such that the polynomials Qi vanish on them. This latter condition means (remember that

the A-algebra structure on R̃1 is induced by the truncated Taylor homomorphism e : A→ A1) that8

0 = Qei (r
(0)
1 + r

(1)
1 t, . . . , r(0)

n + r(1)
n t)

= Qi(r
(0)
1 , . . . , r(0)

n ) +

n∑
j=1

∂Qi
∂xj

(r
(0)
1 , . . . , r(0)

n )r
(1)
j t+Q

δ
(i)
A
i (r

(0)
1 , . . . , r(0)

n )t,

8By Qei and by Q
δ
(1)
A
i we denote the polynomials obtained from Qi by applying e and δ

(1)
A to the coefficients, respectively.
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where Qei denotes the image of Qi under the homomorphism A[x1, . . . , xn]→ A1[x1, . . . , xn] induced by e. Therefore

the R-points of P1(X/(A, δA)) are given by the algebraic subset of A2n(R) consisting in the points (r
(0)
1 , . . . , r

(0)
n , r

(1)
1 , . . . , r

(1)
n )

fulfilling the polynomial equations

Qi(r
(0)
1 , . . . , r(0)

n ) = 0,

n∑
j=1

∂Qi
∂xj

(r
(0)
1 , . . . , r(0)

n )r
(1)
j +Q

δ
(1)
A
i (r

(0)
1 , . . . , r(0)

n ) = 0

for all i = 1, . . . , s.

5. Generalized prolongation spaces

In section 4 of [MS10], Moosa and Scanlon define general prolongation spaces in terms of Weil restrictions and
show their existence in important cases. Here we give a direct construction in the case of affine schemes, which
seems to be more direct and is analogous to the constructions of Buium, Rosen and Vojta that we reviewed in
section 4. We obtain the prolongation spaces as the spectra of the A-algebras ΩDB/(A,ψA) defined in section 3.

For the convenience of the reader we first recall the necessary definitions leading to the notion of prolongation
spaces in the sense of Moosa and Scanlon.

Notation: We denote by S the standard ring scheme over k, i.e. the k-scheme Spec k[x] regarded as a ring scheme
by equipping for every commutative k-algebra A the set S(A) ∼= A with the given ring structure of A.

Definition 5.1 ([MS10, Definition 3.1] and [MS11, Definition 2.1]). A finite free commutative S-algebra scheme is
an affine commutative S-algebra scheme E that is isomorphic to Sl as S-module scheme for some l ∈ N.

Definition 5.2 ([MS10, Definition 3.3]). Given a finite free commutative S-algebra scheme E, a commutative E-ring
(over k) is a commutative k-algebra A together with a homomorphism e : A→ E(A) of k-algebras.

Notation: If E is a finite free S-algebra scheme and e : A → E(A) is a commutative E-ring, then we denote the
ring E(A), considered as A-algebra via the homomorphism e : A → E(A), by Ee(A). By E(A) we denote the same
ring, but with the A-algebra structure A = S(A)→ E(A) induced from the S-algebra structure on E.

Definition 5.3 ([MS10, Definition 4.1]). Let E be a finite free commutative S-algebra scheme over k, e : A→ E(A)
be a commutative E-ring and X be an A-scheme. The prolongation space of X with respect to E and e, denoted
by τ(X, E , e), is the Weil restriction of X ×A Ee(A), where we consider E(A) as A-algebra via e to form the base
extension, from E(A) to A via the standard A-algebra structure on E(A), if it exists.

Remark 5.4. (1) We recall the Weil restriction: Let A be a commutative ring, B be a commutative A-algebra
that is finite and free over A, and let W be a scheme over B such that the morphism SpecB → SpecA is a
homeomorphism or W has the property that every finite set of points is contained in an affine open subset.
Then there exists an A-scheme RB/AW such that for every A-scheme Z there is a bijection

SchB(Z ×A B,W ) ∼= SchA(Z,RB/AW ).

The A-scheme RB/AW is called the Weil restriction of W from B to A. For details we refer to [MS10,
Theorem 2.1] or [BLR90, Section 7.6, Theorem 4].

(2) Let E be a finite free commutative S-algebra scheme over k, let e : A→ E(A) be a commutative E-ring, and
X be an A-scheme. There is a canonical bijection

SchA(Z ×A E(A), X) ∼= SchE(A)(Z ×A E(A), X ×A Ee(A)),(5.1)

where Z ×A E(A) on the left hand side is an A-scheme via

Z ×A E(A)→ Spec E(A)
e−→ SpecA,(5.2)

where e : Spec E(A)→ SpecA is the morphism induced by the ring homomorphism e : A→ E(A).
(3) Therefore, for the prolongation space τ(X, E , e) we have bijections

SchA(Z ×A E(A), X) ∼= SchE(A)(Z ×A E(A), X ×A Ee(A)) ∼= SchA(Z, τ(X, E , e)),(5.3)

where again Z ×A E(A) on the left hand side is an A-scheme via (5.2), and the right factor in X ×A Ee(A)
is an A-algebra via e.
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If E is a finite free commutative S-algebra scheme over k, then the dual D := E(k)∗ := kM(E(k), k) of the
commutative k-algebra E(k) is a cocommutative k-coalgebra. There are isomorphisms of k-algebras

E(A) ∼= E(k)⊗k A ∼= D∗ ⊗k A ∼= kM(D,A)(5.4)

and an E-ring structure e : A→ E(A) on a commutative k-algebra A induces a homomorphism ρA : A→ kM(D,A)
of k-algebras and thus a D-measuring ψA : D ⊗k A → A from A to itself, cf. section 2. For further details on this
duality we refer to [Hei13b].

Remark 5.5. The homomorphism e : A→ E(A) generalizes the homomorphism e : A→ A[t]/(tm+1) in (1.10) and

therefore the A-algebra Ee(A) generalizes the A-algebra Ãm in definition 1.18.

Proposition 5.6. Let E be a finite free commutative S-algebra scheme. We define D := E(k)∗ to be the cocommuta-
tive k-coalgebra associated to E. Let e : A→ E(A) be a commutative E-ring, ρA : A→ kM(D,A) be the composition
of e with (5.4) and let ψA : D⊗k A→ A be the associated D-measuring. Let f : A→ B be a commutative A-algebra
and X := SpecB. Then the A-scheme Spec ΩDB/(A,ψA) is isomorphic to the prolongation space τ(X, E , e) of X with

respect to E and e, i.e. for every affine A-scheme Z = SpecR there is an isomorphism

SchA(Z,Spec ΩDB/(A,ψA))
∼= SchE(A)(Z ×A E(A), X ×A Ee(A)) ∼= SchA(Z ×A E(A), X),(5.5)

where the A-scheme structure on Z ×A E(A) is given by Z ×A E(A)→ Spec E(A)
e−→ SpecA.

Proof. We denote by h : A → R the A-algebra structure of R. The isomorphisms (5.4) induce isomorphisms of
A-algebras

R⊗A E(A) ∼= R⊗A kM(D,A) ∼= kM(D,R),

where in R ⊗A E(A) and R ⊗A kM(D,A) the A-algebra structures on E(A) and kM(D,A) are the canonical ones
to form the tensor product. We consider R ⊗A kM(D,A) and kM(D,R) as A-algebras via the homomorphisms
ρA : A→ kM(D,A) and kM(D,h) ◦ ρA, respectively, and E(A) via e : A→ E(A). Therefore we obtain bijections9

SchE(A)(Z ×A E(A), X ×A Ee(A)) ∼= SchA(Z ×A E(A), X) ∼= AlgA(B,R⊗A E(A)) ∼= AlgA(B, kM(D,R)),

where R⊗A E(A) and kM(D,R) are considered as A-algebras via e and kM(D,h) ◦ ρA, respectively. At the other
side, by proposition 3.2 (1) we have

SchA(Z,Spec ΩDB/(A,ψA))
∼= AlgA(ΩDB/(A,ψA), R) ∼= AlgA(B, kM(D,R)).

�

Example 5.7 (Rings with higher derivation). (1) If E is the S-algebra scheme defined by E(A) := A[t]/(tm+1)
for some m ∈ N and every commutative k-algebra A, then the k-coalgebra D := E(k)∗ associated to E is the
free k-module D = k〈θ(0), . . . , θ(m)〉 with comultiplication ∆ and counit ε given by the homomorphisms of
k-modules defined by

∆(θ(i)) =
∑

i=i1+i2

θ(i1) ⊗ θ(i2) and ε(θ(i)) = δi,0

for all i = 0, . . . ,m as in example 2.5 (1). Commutative E-rings e : A → E(A) (over k) correspond to
commutative k-algebras A with D-measuring ψA : D ⊗k A → A, i.e. with Hasse-Schmidt derivation δA =

(δ
(i)
A )i=0,...,m of length m, cf. example 3.11 and [Hei13b, Example 8.1].
Let f : A → B be a commutative A-algebra and X := SpecB. Assume that ψA : D ⊗k A → A is a D-

measuring. Then the isomorphism between Spec ΩDB/(A,ψA) and τ(SpecB, E , e) is the defining isomorphism

Pm(X/(A, δA)) ∼= Spec HSmB/(A,δA)

of Rosen’s prolongation space Pm(X/(A, δA)). The isomorphism (5.5) specializes to (4.4).

9In Z ×A E(A) and R⊗A E(A), the ring E(A) is considered as A-algebra via the S-algebra structure of E to form the base extension,

but the product is made into an A-algebra via A
e−→ E(A)→ R⊗A E(A). The A-algebra structure of E(A) that is used to form the base

extensions X ×A Ee(A) is given by e : A→ E(A).
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(2) If in the situation of (1) the higher derivation (δ
(i)
A )i=0,...,m on A is trivial, then τ(SpecB, E , e) is isomorphic

to the scheme of m-jet differentials Jm(B/A) = Spec HSmB/A as defined by Vojta (cf. definition 4.1) and the

isomorphism (5.5) specializes to (4.1).

We illustrate the previous example in the case m = 1:

Example 5.8 (Differential rings). Let E be the finite free commutative S-algebra scheme defined by E(A) = A[t]/(t2)

for every commutative k-algebra A. Let further (A, δ
(1)
A ) be a differential field,

e : A→ E(A) = A[t]/(t2), a 7→ a+ δ
(1)
A (a)t

be the truncated Taylor morphism induced by δ
(1)
A and δA = (idA, δ

(1)
A ) be the unital higher derivation of length 1

induced by δ
(1)
A . Let B be a commutative A-algebra, X := SpecB and Y := SpecA. Example 5.7 shows that the

prolongation space τ(X, E , e) is isomorphic to the prolongation space P1(X/(A, δA)) as defined by Rosen, which is
isomorphic to the relative tangent bundle T

X/(Y,δ
(1)
A )

by remark 4.7 (2).

If the derivation δ
(1)
A on A is trivial, then P1(X, (A, δA)) coincides with J1(B/A) as defined by Vojta (cf. defini-

tion 4.1), which is isomorphic to the tangent bundle TX/Y by remark 4.3 (2).
Now we assume that B = A[x1, . . . , xn]/(Q1, . . . , Qs) and let X = Spec(B) be the algebraic subvariety of

Am = SpecA[x1, . . . xn] defined by the polynomials Q1, . . . , Qs ∈ A[x1, . . . xn] over A. Then the prolongation
space τ(X, E , e) is given by the subspace of A2m defined by

Spec(A[x1, . . . , xn, x
(1)
1 , . . . , x(1)

n ]/
({
Qj ,

n∑
i=1

∂Qj
xi

x
(1)
i +Q

δ
(1)
A
j ) | j = 1, . . . , s

})
,

where Q
δ
(1)
A
j denotes the polynomials obtained from Qj by applying δ

(1)
A to each coefficient. This space coincides with

the first prolongation space of Rosen, cf. example 4.8.
If X is defined over the constants of A, i.e. if the coefficients of the polynomials Qj are constant with respect to

the derivation δ
(1)
A , then this specializes to

Spec(A[x1, . . . , xn, x
(1)
1 , . . . , x(1)

n ]/({Qj ,
n∑
i=1

∂Qj
xi

x
(1)
i | j = 1, . . . , s})),

which is the tangent bundle of X, cf. subsection 4.1.
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[Gro64] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I.
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