GENERALIZED DIFFERENTIALS AND PROLONGATION SPACES

FLORIAN HEIDERICH

ABSTRACT. Given a coalgebra D, a commutative algebra A, a commutative A-algebra B and a measuring ¢: DR A —
B, we define an algebra Qg/(/‘ﬂl}) that generalizes the symmetric algebra over the module of Kahler differentials
Symp (QlB/A)A We show that the spectrum of Qg/(AﬁlJ)
and Scanlon, providing a direct construction of the latter. These prolongation spaces generalize those of Gillet,
Rosen and Vojta. The universal prolongations of differential and difference kernels can also be recovered from our
generalized differentials. When D is moreover a bialgebra, our generalized differentials provide a unified approach
to the prolongations of commutative rings, unifying the well-known constructions in the differential and difference
case.

is isomorphic to a prolongation space as defined by Moosa

INTRODUCTION

The literature contains several definitions of prolongations spaces. Most of them generalize the tangent bundle.
Recently, a rather general definition of prolongation spaces was introduced by Moosa and Scanlon (cf. [MS10],
[MS11]). While these prolongation spaces are defined in terms of Weil restrictions, we provide a direct construction
in the case of affine schemes and show that they generalize the prolongation spaces defined previously by Buium,
Rosen and Vojta (cf. [Bui93|, [Ros08] and [VojO07]). As the tangent bundle can be defined in terms of the Kahler
differentials, one can construct the prolongation spaces of Buium, Vojta and Rosen using algebras of (higher)
differentials. We propose a definition of generalized differentials that unifies Kéhler differentials as well as the
divided differentials defined by Vojta and the higher differentials as defined by Rosen. The spectra of our generalized
differentials realize the prolongation spaces due to Moosa and Scanlon in the case of affine schemes.

Let f: A — B be a commutative A-algebra. Recall that the Kéhler differentials Q}B /A of B over A together with
d: B — 9119 /A have the universal property that for every B-module M and every A-derivation 0: B — M there

exists a unique morphism of B-modules ¢: Q}B /A M such that 9 = ¢ o d, giving rise to a bijection
Dera (B, M) = pM(Qp,4, M),

where B/\/l(QlB/A7 M) denotes the homomorphisms of B-modules from Q}B/A to M. If g: B — R is a commutative
B-algebra, then this bijection induces a bijection

(0.1) Dera(B, R) = Algz(Symp(Q5,4), R),

where AIgB(SymB(Q}B/A),R) denotes the homomorphisms of B-algebras from SymB(QlB/A) toR. If §4: A— A
is a derivation on A, the derivation d: B — SymB(QE/Z) induces a derivation d: B — SymB(Q}B/Z)/L;A, where
I5, is the ideal of SymB(Q}S/Z) generated by d f(a) — f(04(a)) for all a € A, and the bijection (0.1 restricts to a
bijection
(0.2) {0 €Dera(B,R)| o f=gofoda} = Algs(Symp(Qpz)/Is,, R).

In positive characteristic, higher derivations are often more suitable than classical derivations. Vojta and Rosen

introduce differentials for higher derivations and generalize the bijections (0.1)) and (0.2)), respectively: Vojta defines
for every m € N a B-algebra HS’g /4 such that for every commutative A-algebra R there is a bijection

(0.3) Alg 4 (HSE, 4, R) = Alg 4 (B, R[t]/(t"*1)),
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the set at the right hand side describing higher derivations of length m from B to R over A, cf. [Voj07]. Given a

higher differential ring (A,d4 = (61(;))1-61\1) and a commutative A-algebra B, Rosen defines a B-algebra HSE/(A75A)
so that there is a bijection

(0.4) Alg 4 (HST ) (4,5,): R) = Alg 4 (B, R[t]/(t"+1)),
where the A-algebra structure on R[t]/(t™*!) is induced by the homomorphism : A — A[t]/(t™ ), a — 31", 552) (a)t?,

cf. [Ros08]. Rosen’s approach is the most general one of the aforementioned, specializing to the others as indicated
by the arrows in the diagram

54 trivial
HS? 4 (Vojta) HS™ (Rosen)
o Remark B/(A,84)
Remark [L.g|m =1 Remark m=1and 6 =idy

(51(41) trivial

Symp(Qp,4) = HSp/a HSE /(a54) = SymB(Q}g/Z)/Ig(AU'
These objects share the property of being universal objects for certain classes of (higher) derivations.

Note that a derivation on a commutative ring A can be equivalently defined as a homomorphism of rings
p: A — A[t]/(t?) such that evgop = ida, where evg: A[t]/(t?) — A is the homomorphism of A-algebras defined
by evg(t) = 0. Similarly, (unital) higher derivations (63))#0,_“7,” on A can be defined as a homomorphism of
rings p: A — A[t]/(#™ 1) such that evgop = ids. The definition of prolongation spaces Moosa and Scanlon is in
terms of commutative £-rings, where £ is a finite free S-algebra scheme over a commutative ring k. A commutative
E-ring is a commutative ring A together with a homomorphism of k-algebras e: A — £(A). This generalizes higher
derivations, £(A) replacing A[t]/(#™*1). In this article we mainly use D-measurings, where D is a coalgebras,
instead of E-rings. This is equivalent to their framework as shown in [Heil3b]: Given a finite free S-algebra
scheme & over k, we define D = £(k)*. The S-algebra structure on & induces a k-coalgebra structure on D and
commutative £-rings e: A — £(A) are equivalent to D-measurings ¢: D ®; A — A from A to itself. The k-algebra
E(A) is isomorphic to the set xM(D, A) of homomorphisms of k-modules from D to A, which becomes a k-algebra
thanks to the k-coalgebra structure on D. A D-measuring ¢: D ®; A — A is equivalent to a homomorphism of
k-algebras p: A — yM(D, A) and the isomorphism £(A) = ,M(D, A) allows to pass from E-ring structures on A
to D-measurings and vice versa.

More generally, given a commutative k-algebra A, a D-measuring ¥4: D ®; A — A, and two commutative
A-algebras B and R, we can consider homomorphisms of A-algebras P: B — yM(D, R), a notion generalizing
higher derivations form B to R over A. For our generalized differentials Qg J(Aba) there is a homomorphism of

A-algebras p,: B — yM(D, QY / ) such that for every homomorphism of A-algebras B — ;M(D, R) there is a
unique homomorphism of A-algebras ¢: Q[B) J(Apa) R such that P = ¢ o p,, giving rise to a bijection

Alg (B, xM(D, R)) = Alg4(Q5 4y, R), P ¢
that generalizes (0.3)) and (0.4)), cf. proposition

From our generalized differentials we also recover universal prolongations of differential kernels due to Johnson
(cf. [Joh82], [Joh85]) and difference kernels (cf. [Wib12], [Wib13]).

The forgetful functor from the category of commutative differential algebras over a given commutative differential
ring (A, d4) to the category of commutative A-algebras has a left adjoint, as shown by Gillet, cf. [Gil02]. A similar
result for commutative unital iterative differential algebras is due to Rosen: The forgetful functor from the category
of commutative unital iterative differential algebras over a given commutative unital iterative differential ring (A, d4)
to the category of commutative (A, d4)-algebras (i.e. the category commutative algebras f: A — B such that Ker f
is an d4-ideal) has a left adjoint. Similarly, the forgetful functor from the category of commutative difference
algebras over a given commutative difference field (A4,04) to the category of commutative A-algebras has a left
adjoint, as shown by Wibmer, cf. [Wib13]. If the above mentioned k-coalgebra D is a k-bialgebra and A is a
commutative D-module algebra, we use our generalized differentials again to unify and generalize these results (cf.

proposition .
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The simplest kind of a prolongation space is the tangent bundle. In the case of an affine scheme X = Spec B
over Y = Spec A, the tangent bundle of X over Y is T,y = Spec SymB(Q}B/A). Vojta defines, given a morphism
of schemes X — Y, the scheme of m-jet differentials J,,,(X/Y) of X over Y, such that for every Y-scheme Z there
is an isomorphism

Schy (Z xz Z[t]/ (™), X) = Schy (Z, J,u (X/Y).

Buium defines, given a derivation d4: A — A on a commutative ring A and scheme X over Y = Spec A, an
A-scheme jet,,(X/Y,d4) such that for every A-scheme Z there is a bijection

Scha(Z x4 Alt]/(t™1), X) 55 Scha(Z, jet,(X/Y,54)),
where the A-scheme structures of Z x 4 A[t]/(t™*") is induced by the exponential map e: A — A[t]/(t"*),a —
> %ti. Buium’s definition specializes to the one of Vojta if the derivation d4 is trivial. Rosen generalizes
Buium’s definition by using higher derivations. Given a finite free commutative S-algebra scheme &£ over k, a
commutative £-ring e: A — £(A) and a scheme X over Y = Spec A, Moosa and Scanlon define the prolongation

space 7(X, &, e) of X with respect to e: A — £(A) as the Weil restriction of X x 4 £¢(A) from £(A) to A. Therefore
for every A-scheme Z there is a bijection

Scha(Z x4 E(A), X) = Scha(Z,7(X, &, €)).

By taking £(A) = A[t]/(t™*!) and e: A — E(A) to be the ring homomorphism induced by a (higher) derivation,
one recovers the definitions of the Buium'’s jet spaces and Rosen’s prolongation spaces as well as the tangent bundle,
Vojta’s jet spaces if the (higher) derivation is trivial.

Moosa and Scanlon define their prolongation spaces as certain Weil restrictions. Our generalized differentials
provide an alternative and more direct construction of their prolongation spaces, at least in the case of affine schemes.
Although it is not explicitly mentioned in their articles, it seems that they assume the finite free S-algebra schemes £
to be commutative, which is equivalent to the coalgebra D associated to £ to be cocommutative. Here we try not to
impose this condition when it is not necessary, since operators like skew-derivations are described as a D-measurings
for coalgebras D that are not cocommutative. We note that commutative rings with iterative ¢-difference operators,
as introduced by Hardouin in [HarI0], can be described as D-module algebras for a cocommutative bialgebra D, as
Masuoka and Yanagawa show, cf. [MY13].

Our interest in generalized differentials arose from the use of D-measurings and D-module algebras in Galois
theories of functional equations, cf. [Tak89], [AMO05], [AMTO09], [Heil0], [Hei], [Heil3a].

This article is organized as follows: In the first section we begin with a review of Kahler differentials and a version
of Kahler differentials relative to a derivation on the base ring. We recall higher derivations, introduced by Hasse
and Schmidt (cf. [HS3T]), which generalize classical derivations. Then we review divided differentials as defined
by Vojta [Voj07] and higher differentials as defined by Rosen [Ros08]. We also recall differential prolongations due
to Gillet [Gil02] and difference prolongations due to Hrushovski, Tomasic and Wibmer, cf. [Hru04], [Tom11] and
[Wib13]. Finally we also include the definition of differential kernels of Johnson [Joh82], [Toh85]) and of difference
kernels due to Wibmer [Wib12].

In section [2| we briefly recall the notion of a measuring and of module algebras, which we use to define our
generalized differentials.

In section 3] we define generalized differentials. We prove universal properties of these generalized differentials and
show how they generalize and unify several of the objects introduced in the first section. We also show functorial
properties of our generalized differentials.

Section [4] recalls several definitions of prolongation spaces. The most well-known of them is the tangent bundle.
We recall the definitions of Vojta’s scheme of jet differentials, Buium’s jet spaces and Rosen’s prolongation spaces
and see how they generalize the tangent bundle. We also observe how these jet and prolongation spaces can be
constructed using some of the objects introduced in the first section.

Finally, in section [5| we recall the definition of prolongation spaces due to Moosa and Scanlon ([MS10], [MS11])
and provide a new construction of them in terms of our generalized differentials. We show how they specialize to
the spaces introduced in section [4

Notation: We assume all rings and algebras to be unital and associative, but not necessarily to be commutative.
Homomorphisms of algebras are assumed to respect the units and modules over (unital) rings are assumed to be
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unitary. We further assume that all coalgebras are counital and coassociative, but not necessarily to be cocommu-
tative. Homomorphisms of coalgebras are assumed to respect the counits. If (D, A ¢e) is a coalgebra and d € D,
then we use the Sweedler notation and denote A(d) by E(d) dy ® dez). Let R be a commutative ring. We denote
the category of algebras over R by Algr and the category of left R-modules by pRM. The category of commutative
R-algebras is denoted by CAlgr. We denote the symmetric algebra of an R-module M by Symp(M). The category
of schemes over R is denoted by Schr. An R-ring is a ring together with a ring homomorphism from R into it.

If C is a category and A and B are objects in C, then we denote the class of morphisms from A to B in C by
C(A, B).

The category of sets is denoted by Set. If A and B are sets and a € A, then we denote by ev,: Set(A,B) — B
the evaluation map, i.e. evy(f) = f(a) for all f € Set(A, B). For elements a,b € A we denote by d, the Kronecker
delta, i.e. dq.q =1 and d,p =0 if a #b.

We denote by N the set of natural numbers (including 0) and by Z the integers. Let k be a commutative ring.

1. REVIEW OF DIFFERENTIALS, DIFFERENTIAL- AND DIFFERENCE KERNELS AND OF PROLONGATIONS

This section is of introductory nature and we do not claim originality of most of its definitions and results. We
first recall the classical Kéahler differentials and a version of them relative to a derivation on the base ring. The
latter is probably known, but have not found any reference. Then we recall the definition of higher derivations. We
show how Vojta’s divided differentials and a similar object, introduced by Rosen, generalize the Kéhler differentials
and the above mentioned relative version of them. We recall two results on differential and difference prolongations
of commutative rings. Finally we state the definitions of differential kernels due to Johnson and of difference kernels
due to Wibmer.

1.1. Kéahler differentials. Given a commutative ring A and a commutative A-algebra f: A — B, a module of
Kahler differentials of B over A is a B-module Q}B/A together with an A-derivation d: B — Q}B/A, which satisfies
the following universal property: For every B-module M and every A-derivation 0: B — M there exists a unique
morphism of B-modules ¢: Q}g /A M such that 0 = ¢ o d. Therefore there is an isomorphism of B-modules

(1.1) Dera (B, M) :%BM(QlB/zmM)v

where Der4(B, M) denotes the A-derivations from B to M. By the universal property the module of Kéahler
differentials is unique. It also exists and there are two well-known constructions.
First, the Kahler differentials can be constructed by taking Q}g /a o be the quotient of the free B-module

generated by {db | b € B} by the submodule generated by the elements
d(b+b")—db—db, d®Y)—bdd —b'db and df(a)

for all b,b' € B and a € A. The A-derivation d: B — Q}B,/A is defined by sending b to the image of d b in QlB/A,

which we denote by abuse of notation again by d b, for all b € B. The universal property is fulfilled by construction.
A second construction is as follows: If m: B® 4 B — B is the multiplication of the A-algebra B and I = Kerm is

its kernel, then d: B — I /1%, b+ [b® 1 —1®b] is a module of Kihler differentials, cf. [Mat80, p. 182] for instance.
Later we use the isomorphism in the case where M is a commutative B-algebra, in the form

(1.2) Der (B, M) = Alg(Symp(Q5,4), M),
where Symp (QE/A) denotes the symmetric algebra of Q}B/A over B.
Remark 1.1. There is an isomorphism of B-algebras
Symp(Qp,4) = Bldb| b€ B/I,
where I is the ideal generated by
d(b+b")—db—db, d)—bdd —b'db and df(a)
for all b,/ € B and a € A.
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1.2. Kahler differentials relative to a derivation.
Notation: Let A be a commutative ring, f: A — B be a commutative A-algebra and §4: A — A be a derivation.
If g: B — R is a commutative B-algebra, then we denote the set of derivations 0: B — R extending §4 by
Ders, (B, R) := {0 € Dery(B,R) | 0o f =go foda}

The derivation d: B — QlB /z induces a derivation

d: B — Symp(Qp/5)/Ifos.4;
where I¢o5, is the ideal of Sympg (QE/Z) that is generated by d f(a) — f(da(a)) for all @ € A. This derivation extends
the given derivation 6 4: A — A and fulfills the following universal property:

Lemma 1.2. If g: B — R is a commutative B-algebra and 0 € Ders, (B, R) is a derivation extending 64, then
there exists a unique homomorphism of B-algebras ¢: SymB(Q}B/Z)/IfogA — R such that pod = 0, i.e. there is a
bijection

(1.3) Ders, (B, R) = AlgB(SymB(Q}B/Z)/IfCMSAﬂ R).
Proof. The homomorphism of B-algebras ¢ is uniquely defined by ¢(db) := 9(b). This is well defined, since
6(d £(a) — £(64(a))) = D(f(a)) — g(f(54(a))) = 0 for all a € A, O

Remark 1.3. We have
SymB(QlB/Z)/IfO5A = Bldb|be B|/I,
where I is the ideal generated by
d(b+b)—db—db, dY)—bdt —b'db and d(f(a))— f(0a(a))
1.3. Higher derivations. We briefly recall the definition of higher derivations.

Notation: Let A be a commutative ring, B and R be commutative A-algebras and m be a natural number or co.

Definition 1.4. A higher derivation of length m from B to R over A is a sequenc § = (60,...,6(m) of
homomorphisms of A-modules §): B — R such that

blbg Z (5(“) (Z2 ( ) and 5(1)(1) = (52"0
11+i2=1
for all by,by € B and all i € {0,...,m}. We denote the set of higher derivations of length m from B to R over
A by Der'} (B, R). A higher derivation § = (6©,... (™) from B to itself is called unital if §©) = idp and it is
called iterative if 6 o §0) = (“#7)5(+9) for all i, j € N.

Remark 1.5. There is a discrepancy in the definition of higher derivations in the literature. While a condition on
the Oth higher derivation is imposed in [Mat89], no such condition is present in [Swe69)].

Remark 1.6. We define R, to be the quotient R[t]/(t™*1) of the polynomial ring R[t] if m € N and R = R[t].
A sequence § = (0))i—o....m of maps 6. B — R is a higher derivation of length m from B to R over A if and
only if the map

,,,,,

0:B— Ry, b > s )t
i=0
s a homomorphism of A-algebras, where R,, is considered as A-algebra via the composition of its natural R-algebra
structure and the given A-algebra structure of R. Therefore there is a bijection
(1.4) Der’y (B, R) 2 Alg 4 (B, Ry,).

Note that Der’y (B, R) does not coincide with Der4(B, R) as defined in subsection . Their relation is explained
in remark [L10.

IIf m = oo, then we write by abuse of notation § = (6(0>, R 5(’”)) instead of § = (5“))1-61\] and similarly in other situations.
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1.4. Vojta’s divided differentials.

Notation: Let A be a commutative ring and f: A — B be a commutative A-algebra.

Definition 1.7 ([Voj07, Definition 1.3]). For every natural number m, the B-algebra of divided differentials HS, 4
is defined as the quotiemﬂ
HS 4 = BpY |be B,ieA{0,...,m}]/I,
where I is the ideal generated by the elements
(b+ )0 — () — @)@, @)D = Y bR f()9) and ()@ —b
11+1i2=1

forallb,b’eB,aEA,ieNandjzl.

There is a higher derivation d = (d(z))i:O,...,m of length m from B to HSE 4 over A given by the A-linear maps

d": B HSE ., b b,

which we call the universal higher derivation of length m.

Remark 1.8. We have isomorphisms of B-algebras HSB/A =~ B and

(1.5) HSB/A = SymB(QB/A)a
where Q}B/A is the module of Kdhler differentials of B over A as defined in subsection .
The B-algebras (HSE ) 4)men form a direct system and we define
meN

Proposition 1.9 ([Voj07, Corollary 1.8]). For every commutative A-algebra R there is an isomorphism
(1.6) A|gA(B,R[t]/(tm+l)) A'&:A(HSB/A, R).

.....

m over A from B to a commutative A algebra R.

Remark 1.10. Let g: B — R be a commutative B-algebra. Using the isomorphism (L.5) and considering R[t]/(t?)

as R-algebra via the canonical R-algebra structure and as B-algebra via the composition B 2> R — R[t]/(t?), we
obtain horizontal isomorphisms

S Alga (B, RI/ (1) — =

Der (B, R) Alg s (HS 4, R) ——= Alg 4 (Symp(Qp ), R)

~ ~ (1.5)
Ders(B, R) == {0 € Algy(B, RIE]/(2)) | 00 = g} — Alg, (HSh 0, ) s Alg s (Symp (2] 1), ),
///->

(L.2)

where : R[t]/(t*) — R is the R-algebra homomorphism defined by e(t) = 0. Therefore the isomorphism can
be considered as a gemeralization of the isomorphism if the module M is a B-algebra. FElements of the sets
in the first row are specified by a pair (o,0) consisting of a homomorphism o € Alg,4(B, R) and an A-derivation
0 € Dera(B, R), where R is considered as B-algebra via o. In this description elements of the second row correspond
to such pairs (o,0) with o = g.

Remark 1.11. The algebra of higher differentials QB/A defined by Maurischat (cf. [MaulQ, Theorem 3.10]) is a
completion of HSE) 4.

2V0Jta defines HSB/A as the quotient of B[b(i) | b€ B,i€{l,...,m}] by an ideal defined similarly as the ideal I below, but without
the relation b(®) — b for b € B and identifies b(°) with b. This is equivalent to the definition here.
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1.5. Rosen’s higher differentials.

Notation: Let A be a commutative ring.

Definition 1.12 ([Ros08| Definition 1.4]). A commutative D-ring over A is a commutative A-algebra B together

with a higher derivation dp = (5g))i€N of length oo from B to itself such that 61(,30) =idg. A commutative D-ring

(B,dp) over A is said to be iterative, if the higher derivation 0p is iterative.
Definition 1.13 ([Ros08| Definition 1.8]). Let (A,d4) be a commutative D-ring (over A). A commutative A-algebra
f: A — B is a commutative (A, d4)-algebra if for all a € A, the equality f(a) = 0 implies f(5x)(a)) =0 for all
i €N, i.e. if Ker f is a D-ideal.
If f: A— By and g: A — Bs are commutative (A, 04)-algebras, then a higher derivation from Bj to B of length

m over (A,d04) is a sequence O = (8(1))1-:07___7,” of maps 0 : By — By such that

(1) D (b +) =D (b) + 9D (),

(2) 0D (b-b) =3, i 00 (b) - 012 (V) and

(3) 99 (f(a)) = 9(6%(a))
forallae A, b)) € B andi=0,...,m. We denote the set of higher derivations from By to Bs of length m over
(A,64) by Der'ErA’(;A)(Bl, By).

Remark 1.14. If the higher derivation 4 = (04)ien on A is trivial, i.e. if 51(:) = 0 holds for all i > 1, then
definition [1.13 reduces to definition 1.4}

Definition 1.15 ([Ros08| Definition 1.9]). Given a commutative D-ring (A,04) and a commutative (A,04)-algebra
f: A— B, we define a B-algebra

HSE (45, =BbBY [be B,0<i<m]/I,
where I is the ideal generated by
(b+b)D —p® @ (YD - Z by 2)  f(g) @ — f(<5,(Z) (@) and O —b
i1 Fip=i
forallae A, allb,b' € B and alli =0,...,m.
Remark 1.16. (1) If (A,64) is the trivial higher differential ring (i.e. 51(‘?) =idy and 51(4{) =0 forallj>1),

then every commutative A-algebra B is an (A, d4)-algebra and HSE (4 5,y in definition coincides with
the B-algebra HSZ,L/A as defined by Vojta, cf. definition .

(2) If 64 = (id 4, (5(Al)) is the higher derivation of length 1 on A that is induced by a derivation (51(41): A— A and
if f: A— B is a commutative A-algebra, then there is a bijection of B-algebras
(1.7) HSE (4.6, = SymB(QJlB/Z)/Ifo[;(Alh
cf. subsection[I.3

Definition 1.17 ([Ros08, Definition 1.11]). Let (A, d4) be a commutative D-ring. Then a commutative D-(A,d4)-
algebra is a commutative D-ring (B, 8) that is also an (A, §4)-algebra via f: A — B such that 09 (f(a)) = f(éf;)(a))
foralli e N and all a € A.

Definition 1.18. Given a commutative D-ring (A,04) and a commutative (A,04)-algebra f: A — B, the B-
algebras (HS5(4.5,))men form a directed system. We denote the direct limit by

(1.8) HSE ) (a6,4) = im HS/(45,) -
meN

For m € N we define rings

(1.9) Ay, = Alt)/ (™ and A = A[t]
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and homomorphisms
(1.10) e: A=A, a— Zéfj)(a)ti
i=0

for all m € N and for m = co. We denote by A, the ring A,, considered as an A-algebra via the homomorphism
e. Similarly, we denote by By, the ring By, that is made into an A-algebra via the composition

AS Ay = B, am Y F(09(a))t
1=0

The A-algebra Bo is also denoted by B—[vt]]

Proposition 1.19 ([Ros08, Propositions 1.18 and 1.19 and Corollary 1.20]). Given a commutative D-ring (A,54)
and two commutative (A,4)-algebras B and R, there are isomorphisms

Der(y 5,1 (B, R) = Alg(HSE(4,5,): R)
and
(1.11) Alg (B, Ry) = Derly 5,1(B, R)
and therefore also
(1.12) Alg4(B, Ry) = Algs(HSE 4 5.,), R).

Remark 1.20. (1) The isomorphism generalizes (|1.6]).
(2) The diagram in remark generalizes as follows: Let (5141): A — A be a derivation, 64 = (id 4, 51(41)) be the
associated higher derivation of length 1 on A, f: A — B be a commutative (A,d4)-algebra and g: B — R
be a commutative B-algebra.

(L.11) ~ (L.12) (L.7)
———— Alg4(B,Ry) ————— Alg4(HS} /(4 5,): R) ! Alg 4 (Symp(Qp,,)/1

foéfql) ’ R)

Der%A75A)(B, R)

~ ~ ~ (.7
Der(s(Al)(B,R) —— {0 €Alg,(B,R;) |eol =g} — AIgB(HS}B/(AﬁA),R) !AIgB(SymB(Q}g/Z)/IfO(S(Al),R)
(1.3)

(8) An analogue of the isomorphism exits also for m = oo and has the form
(1.13) Alg (B, R[t]) = Alg4(HS% (4.5, R)-

Lemma 1.21 ([Ros08, Lemma 1.12]). If (A4,64) is a commutative unital iterative differential ring, then the
B-algebra HSOBO/(A’(;A) carries a canonical unital iterative higher derivation d = (d(l))leN of length oo defined by

dD(B®)) = (FFpHE+D for all k,1 € N and all b € B.

Proposition 1.22 ([Ros08, Proposition 1.21]). Let (A,d4) be an iterative D-ring. Then the forgetful functor from
the category of commutative iterative D-(A,  4)-algebras to the category of commutative (A, d4)-algebras has a left
adjoint, that sends an (A, d4)-algebra B to (HSE (4 5,,d), where d is the iterative derivation on HSF) (4 5,y defined

in lemma 121

Sketch of proof. If B is a commutative (A, d4)-algebra, (S,ds) a commutative D-(A, d4)-algebra and g: B — S is
a homomorphism of A-algebras, then we define G: (HSE)(4,5,),d) — (5,ds) by G(OW) = (5(31) (g(b)) for all b € B
and 7 € N. O
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1.6. Differential prolongations. Gillet constructs prolongations in section 1.2 of [Gil02]. We summarize his
results.

Notation: Let (A,04) be a commutative differential ring.

Definition 1.23. We denote by DifferentialCAlg 4 s5,) the category of commutative differential (A, 0 4)-algebras, the
objects being commutative A-algebras f: A — B equipped with a derivation ég: B — B such that pof = foda, and
the morphisms from a commutative differential (A,d4)-algebra (By,dp,) to (B2, 0p,) being morphisms of A-algebras
@: By — By such that p o dp, = dp, o p.

Proposition 1.24 ([Gil02, Proposition 1.19]). The forgetful functor
U': DifferentialCAlg 4 5,y — CAlg,, (B,dp)+— B

has a left adjoint
()°: CAlg, — DifferentialCAlg 4 5,), B+ (B*,9),
i.e. for every commutative A-algebra B and every commutative differential (A, d4)-algebra (S, dg) there is a bijection

(1.14) DifferentialCAlg 4 5,)((B>,0), (5,ds)) = CAlg4 (B, 5).

Proof. For a proof using general properties of forgetful functors we refer to [Gil02] Proposition 1.19]. We will
construct the algebra B> in proposition [I.29] below and show that it has the required property. O

Lemma 1.25 ([Gil02] Lemma 1.21]). Let X be a set. Then the functor
Differential CAlg 4 5, — Set, (B,dg) — B¥ (== Set(X, B))
is representable, i.e. there is a commutative differential (A,04)-algebra (A{X},d) such that
DifferentialCAlg 4 5,)((A{X},6),(B,0p)) = B*

for all commutative differential (A, da)-algebras (B,dg). In other words the forgetful functor from the category
DifferentialCAlg 4 5,) to Set is representable.

Proof. We define A{X} to be the differential ring over (A, d4) in the variables X, which is defined as the polynomial
A-algebra in the variables (x(i))zex’ieN equipped with the derivation & extending 64 by §(z®) = z(+1 for all
r € X and i € N. Given a function f: X — B, we associate to it the function f: A{X} — B defined by sending
) to 6% (f(x)) for all z € X and i € N. O

Definition 1.26. The differential ring A{X} is called the ring of differential polynomials on the set X over (A,d4).

Lemma 1.27 ([Gil02) Lemma 1.23]). Let (A4,d4) be a differential field and X be a set. Then (A[X])*° is isomorphic
to the differential polynomial ring A{X}.

Proof. The left adjoint of the forgetful functor CAlg, — Set is given by X — A[X]. The left adjoint of the
forgetful functor DifferentialCAlg 4 5,y — CAlg, is given by B — (B*,d) and the left adjoint of the forgetful
functor DifferentialCAlg 4 5,) — Set is

Set — DifferentialCAlg 4 5,), X — (A{X},d).

The composition of the first and second adjoint functor is the third one. Therefore we obtain (A[X])* = A{X}. O

Let (A,84) be a commutative differential ring and f: A — B be a commutative A-algebra. We define B(~1) := A,
p_1 = f and 6V == p_; 0 §4. We define a category T(a,s5.,B) as follows: The objects are the sequences
(B® p;,6@))en consisting of

(1) commutative rings B®,
(2) ring homomorphism p;: B® — BO+1 and
(3) derivations 6(): B® — BU+1) where we consider BUHY) as B(¥)-algebra via p;
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such that B = B and
(1.15) pi o8t =0 op_,

for each ¢ > 0. The morphisms from (BD, p;, 60Y)ien to (B'D, pl,6'@);en are families of ring homomorphisms
(fi: BO B’(”)ieN such that fo = idpg,

(1.16) 8 Do f = fiz100W and  pjofi= fiy10pi

for all i € N.

Remark 1.28. Let (A,64) be a commutative differential ring and f: A — B be a commutative A-algebra. Let
further (S, 0s) be a commutative differential (A,d4)-algebra that is a B-algebra via g: B — S. To this data there is
associated naturally an element of T(a 5, B) given by

BGD = 4, B =B BW .= g
p-1=F, po =g pi = 1dg
51— foda, 50 .— dsog 5@ — S

for alli>1.

Proposition 1.29 ([Gil02, Proposition 1.26]). Let (A,04) be a commutative differential ring and B be a commu-
tative A-algebra via f: A — B.

(1) The category T as,, By has an initial object (BD, pi, 6@ ien.

(2) The algebras (B(i))ieNu{q} form a direct system via the homomorphisms (p;: B — B(Hl))ieNu{q} and

the derivations 5 : B® — BU+Y induce a derivation & on the direct limit
B*:= lim BY.
ieNU{—1}
(8) For every commutative differential (A,d4)-algebra (S,0s) and every n € N there are natural bijections

between the following sets:
CAlg,(B. 5)

{(fD)izo..n € lim CAlgy(BD,5) | f0 o080~ = g0 f0-1}

.....

1=0,...,n
{(/D)ien € m CAlg4 (B, 8) | f© 0 607D = 650 f07D}
€N
Differential CAlg 4 5,)((B>,0), (S, ds))

Proof. We construct the sequence (B, p,, 6("))n€NU{,1} by induction on n. We have by definition B(-—1 = A4,
BO =B, p_y = fand 61 = fod,. Assume that for some n > 1 a sequence

s 50 §(n—2)
B1 B ... ——=BD
pP—1 PO Pn—2

is given such that the relations (I.15)) hold for alli = 0,...,n—2. We define B to be Sym g1, (9}3(”,1)/2)/[5(n_2),

(n—1)

the morphism p,,_1 to be the natural B -algebra structure of Sympgm-1) (Q}B(,,L,l)/z)/l(;(nfm and 6"~V to be the

derivation d: B™~™Y — Symp-1)(Q /Isn—2 extending 6("~2) that we obtain by applying subsection

}3(%*1)/2)

(n—2)
to B=2) & pn-1)
Pn—2

In order to see that this sequence is an initial object, let (B'™, pf,,§'), ey be an arbitrary object in T(4,54,B)
We define a morphism (B, p,,, 6(™),eny — (B, pl. . §'M), ey inductively as follows: First we define fy = id o).
Assume the morphisms fo, ..., f,—1 are already defined for some n > 1 and fulfill the commutation relations (|1.16)
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for alli =0,...,n — 2. We consider B'™) as B(»~D-_algebra via p/, ;o f,_1. The derivation &'~ o f,,_; extends
8(m=2) since

P10 fae1080™D =pl 108D, o =8"Vopl o0 fuo=08""of 10p, .
Therefore by lemma there exists a unique f, € Alggm-1 (B™, B'™) such that & Vo f, 1 = f, 0801,
Since f,, is a morphism of B("~D-algebras, we conclude that f, o pp,_1 = P10 fn-1-

§n—1)

B " ey L b

Pn—2 Pn—1
fn—2 fn-1 fn
6/(n 2) 5/(n 1) ~

B’ (n—2) —— B/(n 1) — B/(n)
pnfz pn71
By induction we obtain a morphism (f,)nen from (B™, p,, 6(M),cn to (B, pl,, ™) en
The affirmation in part is clear.
To prove that for every commutative differential (A, J4)-algebra (5, ds) there is a bijection
DifferentialCAlg 4 5,)((B>,9), (S, ds)) = CAlg (B, S)
we note the following: Let g: B — S be a homomorphism of A-algebras. By remark the sequence

foda dsog ds ds
A ' B s s s
f g idg idg

is an element of the category T(4,s5,,5). Using the universal property of the initial object, we obtain homomorphisms
(fi)ien such that the following diagrams commuteﬂ

(=1) (0) (1) (2)
B —— pO) ——— g1y ——— gy —°
p—1 PO P1 P2
lidA J{idB \Lﬁ sz
foda dsog ds s
A B S s .,
7 g ids idg

where B&1 = A, BO = B p_; = f and 6V = fods. Together with fy := idg we obtain an element
(fi)ien € {(fD)ien € lim,_ CAlg,(B B®W 8)| f o 0=1) = §g0 f~D} and therefore a map

CAlg4(B,S) — {(f<> )ien € lim CAlg 4 (B®, 5) | f© 06071 = 550 fO-1},
€N

which is bijective with inverse given by the map that sends (f;);en to fo. By truncation we obtain maps from
{(/D)ien € m CAlg4 (B, 8) | f© 0 607D = 650 f07D}
€N
to

{(F)ig € lim CAlgy(B®,8) | f@ o051 =550 fi=1}

1=0,...,n
for all n € N, which are also bijective as we have seen in the proof of part Finally we note that the bijection
Hm, CAlg,(B®W,S) = CAlg, (B>, S) restricts to a bijection between {(f®);en € Hm, CAlg,(B®W,S) | f® o

501 = g o f"D} and DifferentialCAlg 4 5,y ((B*, ), (S,ds)). O
Example 1.30. Let B = Alz] be the polynomial ring over A, considered as A-algebra via the homomorphism
f+ A — Alx] that sends a € A to the constant polynomial a. If we apply proposition in this situation,
then we obtain BY) = SymA[x](QAm/Z)/IaA = Az, 2M], where we denote x by =9 and dx by V) and the
derivation 6 : Alz] — Az, 2MW] is the derivation extending f o 04 by 6 (z) = 2. In general B™ =

3We consider this as two diagrams, one formed by the upper one of each pair of horizontal arrows and one with the lower one.
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SymA[m(D),z(l) z<n71>](Qh[x<0)7x(1>,.4.,x<n71>}/z)/1’5(n_2> = A[x(o),z(l),...,x(”)], and B>® = A[:v(") | n € N] with

derivation §: B® — B> extending 54 by 6(xV) = 20D for alli € N. The differential ring B is usually denoted
by A{zx} and is called the differential polynomial algebra.

1.7. Difference prolongations. We recall a difference analogue of the differential prolongations, cf. [Hru04, p.
21], [Tom11l Proposition 2.1] or [Wib13| Proposition 1.1.26].

Definition 1.31. If A is a commutative ring and o 4 an endomorphism of A, then a commutative difference (A, o 4)-
algebra is a commutative A-algebra f: A — B together with an endomorphism og of B such that opo f = fooa.

Let DifferenceCAlg, ,,) denote the category of commutative difference (A, 04)-algebras, the morphisms from
(B1,0B,) to (B2,0p,) being morphisms of A-algebras ¢: By — Bg such that ¢ o op, = op, o @.

Proposition 1.32. Let A be a field and o4 be an endomorphism of the field A. Let further B be a commutative
A-algebra. Then there exists a commutative difference (A, o4)-algebra ([o]aB,0) and a morphism v¢: B — [o]aB
of A-algebras satisfying the following universal property: For every commutative difference (A, o 4)-algebra (S, os)
and every morphism g: B — S of A-algebras there exists a unique morphism G: [c]aB — S of difference (A,04)-
algebras such that the diagram

(1.17) B——————[0]aB

commutes. The commutative difference (A, o 4)-algebra ([o]aB, o) is unique up to unique isomorphism in the sense
that for every commutative difference (A, o 4)-algebra (S,og) there is a bijection

CAlg,(B,S) = DifferenceCAlg 4 , ) (([0]aB,0), (S, 05)),
i.e. the forgetful functor DifferenceCAlg 4 , .y — CAlgy has a left-adjoint.

Proof. For i € N let “4B be the ring B ®4 A, where the A-algebra structure on the right factor is o%. We

consider 74 B as A-algebra via the right factor, which is considered as A-algebra via the identity on A. There is a
homomorphism of rings

Vi 4B Uix+1B, bRar— bRoa(a).
We define
(1.18) B;=B®4,°4“B®4- - ®4°4B.
The family of A-algebras (B;);en becomes a direct system via the morphisms

B; =+ Biy1, @ Qb;—>bR--- Qb1
and we define [0] 4B as the direct limit lim, _ Bi.
The morphisms
UitRi%Ri+1, b0®®bz*_>1®w0(b0)®®'¢)l(bl)

induce a morphism o: [0]aB — [0]aB. We define ¢: B — [0]4B by identifying B with By.
Let (S,05) be a commutative difference (A, o 4)-algebra and let g: B — S be a morphism of A-algebras. We
define morphisms of A-algebras

Gi:74B =8, b@aw ok(g(d)) - g(f(a)).
The morphisms G; induce morphisms of A-algebras
B =S, by®--- @b, — Go(by)...Gr(by)
for all £ € N and finally a morphism of A-algebras
G: [0]aB — S.
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Forb®a € o' B we have
Giti(1i(b2a)) =Gi1 (b0 a(a) =05 (g(0))g(f(oa(a)) =05 (9(0)os(g(f(a)) =as(0s(g9(b)g(f(a) =0s(Gi(b®a))

and therefore
Glo(bo @ ®bi)) = G(L&Yo(bo) ® - -+ @ 13(bi))

= Gl(wO(bO)) z+1(w1< Z))

= 05(Go(bo)) - - 05(Gi(bi))

=05(G(bo ® - @ b;)),
i.e. G is a morphism of difference (A, 04)-algebras. The diagram ([1.17) commutes, since we have G(¢ (b)) = G(b) =
Go(b) = g(b) for all b € B. In order to show that the morphism G is unique, it is enough to show that any morphism
G': [o]aB — S of difference (A, 4)-algebras coincides with G on each B;, i € N, and it is even enough to show that
it coincides with G; on each 74 B, which is the case, since G(a*(¢(D))) = o(G'(¥(b))) = o(g(b)) = Gi(a ((b))).
The uniqueness of [0]4B can be shown as usual. O

Example 1.33. Let A be a field with endomorphism o4 of A and let B = Alx] be the polynomial algebra in one
variable © over A. Then the difference (A, o 4)-algebra [c]aB in proposition s isomorphic to the difference
polynomial ring
A{z} = Alo"(x) | n € N]
equipped with the endomorphism o extending o via
o: Alz} — A{z}, o™ (x) — 0" (z)

Proof. The A-algebras 74 B in the proof of proposition are isomorphic to B itself. Therefore B; is an (i+ 1)-fold

tensor product of B = Alx] with itself over A, which is isomorphic to the polynomial algebra Alx,o(z),...,o%(z)].
Their direct limit [¢] 4 B is isomorphic to A{z} and it is easy to see that the endomorphism o on A{z} corresponds
to o: [0]aB — [0]aB under this isomorphism. O

1.8. Differential kernels and their prolongations. Johnson introduces differential kernels and their prolonga-
tions in [Joh82] and [Joh85].

Definition 1.34 ([Joh853, §I.1, p.176] or [Joh82, 1.1, p. 94]). An m-differential kernel is a homomorphism of
commutative rings f: Uy — Uy together with derivations 01, ...,0y, from Uy to Us (we consider Uy as Uy-module
via the Uy -algebra structure f).

g m 01,...,0m
A morphism of m-differential kernels from U f1—)> Us; to V1 gl—> Vi consists of two ring homo-
morphisms p;: U; — V; for j = 1,2 such that the diagrams

L

v, — v, and U —2 U,

l@l ltpz lsﬂl ltm
04

Vi—25 v, Vi — Vs

commute for all i € {1,...,m}.

Definition 1.35 ([Joh82, p. 95]). Let U Udtedmdy v, gpg v 920y e o m- differential kernels. We
say that (g,01,...,0m) prolongs (f,61,...,0m) if we have for all u € U that 0;(f(u)) = ¢(0;(u)) and 0;(0;(u)) =
0;(0i(u)), i.e. if the diagrams

U—" v amd  U—"v
lf J/g 5]' 3j
v W v

commute for alli,j € {1,...,m}.
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O1,..,0m 07 50,0, . . . 1015-50m
Ifv u W and V M W' are prolongations of the differential kernel U M V, then a

morphism from (g,01,...,0m) to (¢',01,...,0L,) is any ring homomorphism h: W — W' such that (idy,h) is a
morphism of the differential kernel (g,01,...,0m) to (¢',01,...,0%,).

IfVv M W is a prolongation of the differential kernel U M Voand h: W — W' is a ring
homomorphism, then ¢’ :== hog: V.— W' together with the derivations 0, :== h o 8; form a differential kernel that

prolongs U — V', since the diagrams

U—" v amd UV
L N
61- g' 81
V—W V— W

x \X;‘
9/ W/ ai W/

commute. We says that this is the prolongation defined by h.

Proposition 1.36 (Proposition 1.4 in [Joh82]). Let A ﬂ B be a differential kernel. There exists a differential

kernel B 2% ¢ prolonging (f,d) such that if B Y9, o1 s another prolongation of (f,0), then (¢',0") is defined

by h for a unique h: C — C'.

Example 1.37. If B = A[x], then the universal prolongation of the differential kernel that is given by the inclusion
A — Alz] and the trivial derivation, which is provided by proposition is giwen by the inclusion Alz] <
Alz, XM and the derivation 9: Alx] — Alx, X)) over A that is defined by d(x) = X, Note that this is the
same as B — BW in ezample .

1.9. Difference kernels and their prolongations. We recall the definition of difference kernels due to Wibmer
(cf. [Wib13] or [Wib12] for a more general definition).

Notation: Let K be a difference field (i.e. a field equipped with an endomorphism o) and t be a natural number
greater or equal to 1.

Let K{X} be the difference polynomial ring over (K, o), cf. example There is a family (K[z,0(z), ..., (x)])ien
of subrings of K{z} and the endomorphism o of the K-algebra K{z} restricts to homomorphisms of K-algebras
o: Klx,...,0t Y z)] — K[x,...,ot(z)] such that o(c7(x)) := o/T1(x) for all j € {0,...,t —1}.

Definition 1.38. A difference kernel of length t in the difference polynomial ring K{x} is a prime ideal p; of the
subring K|z, ..., otz] of K{z} such that c=1(p;) = p, N K[z, ..., 0" (z)].

Definition 1.39. A prolongation of a difference kernel p, of length t is a difference kernel p,11 of length t+1 such
that pyy1 N K|z, .., otx] = p; holds.

Remark 1.40. Let K be a field and p; C Klz,...,0%(x)] be a difference kernel of length t. It induces two
homomorphisms:

(1) The homomorphism
o: Klz,...,0"  2)] = K[z,...,0'(2)], o'(z) o (z)
induces a ring homomorphism
: Klz,..., 0" (2)]/(p: N K[z,...,0" " (2)]) = Klz,...,0%(x)]/ps.
(2) The inclusion ¢: K[z, ..., 0" x] < Klx,...,o'z] induces an injection
o Klz,...,0t 7] /(ps N Kz,..., 0" (2)]) = K[z,...,02]/p;.
A prolongation pgi1 of py also induces two homomorphisms

i: Klz,...,o'2]/(p: N K[z,...,0%]) = Klz,..., 0" x] /pi1.
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and
G: Klz,...,c'z]/(p: N K[z,...,0%]) = K[z,...,0" 2] /pr

such that the following diagram commutes

Klz,...,o ] /(p: N K[z, ...,0t 2]) ——— Klz,...,0'z]/ps
Klz,...,c'z]/p: L Klx,...,oct 2] /pia1.

In the form of pairs (1,5) a difference kernel and its prolongations are of a similar nature as 1-differential
kernels and their prolongations as defined by Johnson (cf. subsection @, just with a homomorphism & instead of
a derivation 0.

2. MEASURINGS AND MODULE ALGEBRAS

Given a k-coalgebra D, we recall the definition of D-measurings and, if D is a k-bialgebra, of D-module algebras.
For k-modules A, B and D there is an isomorphism of (left) k-modules

(2.1) wWM(D @y A, B) = 1 M(A,  M(D,B)), ¢ (a— (d—¢P(d®a))).
Lemma 2.1. If (D,Ap,ep) is a k-coalgebra and (B,mp,ng) is a k-algebra, then the k-module x M (D, B) becomes
a k-algebra with respect to the convolution product, defined by
frg=mpo(f®g)oAp
for f,g € tM(D, B), and unit element given by the composition
D212 B,

Furthermore, D is cocommutative if and only if tM(D, B) is commutative for every commutative k-algebra B.
If B is commutative, then 1 M(D, B) is a B-algebra via

po: B— 1M(D,B), b+ (d+— e(d)b).

Proof. See for example [BW03|, 1.3] for a proof of the first two statements. The last statement holds, since for all
d € D and all b € B we have

(po(b) - £)(d) = e(dr)) - b- f(dz) =b- f(d) = f(d) - b=>_ f(da))-e(dz) b= (fpo(b))(d).
(d) (d)
]

Proposition 2.2. Let D be a k-coalgebra and let A and B be k-algebras. If v is an element of 1M(D ®y A, B)
and p € tM(A, R M(D, B)) is the image of 1 under the isomorphism (2.1)), then the following are equivalent:
(1) p is a homomorphism of k-algebras and
(2) for alld € D and all a,b € A
(a) Y(d®ab) =34 ¥(da) ® a)(d2) ®b) and
(b) Y¥(d®1a) =ep(d)lp.

Proof. This can be seen by expanding the definition of p and of the condition that p be a homomorphism of
k-algebras as is worked out in detail in [Swe69, Proposition 7.0.1]. g

Definition 2.3. Let D be a k-coalgebra and A and B be k-algebras. We say that ¢ € 1 M(D ®y A, B) measures A
to B if the equivalent conditions in proposition[2.3 are satisfied. The homomorphism 1 is then called a D-measuring
from A to B.
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If A1, Ay, By and By are k-algebras, ¢¥1: D ®y A1 — By measures Ay to By and vs: D ® Ay — By measures
Ay to Bg, then we say that homomorphisms @: A1 — Ag and pp: By — Bs of k-algebras are compatible with
the D-measurings if the diagram

D®kA1L)Bl

lidD Rpa \MPB

D®kA2L)Bg

commutes.

If the k-coalgebra D contains a group-like element 1 and B is an A-algebra via f: A — B, then a D-measuring
P € M(D® A, B) is called unital if (1 ® a) = f(a) for all a € A.

If D is a k-bialgebra and ¢ € tM(D ®y A, A) is a D-measuring that makes A into a D-module, then 1 is called
a D-module algebra structure and (A,v) is a D-module algebra. Morphisms of D-module algebras are morphisms
of k-algebras that are compatible with the D-measurings.

The following lemma is clear from the definitions.

Lemma 2.4. Let D be a k-coalgebra and Ay, As, By and By be k-algebras. If 1 € xM(D &y A1, B1) measures
A; to By and vy € pM(D ®y Ag, Bo) measures Ay to By and p1: Ay — xM(D,B1) and py: Ay — pM(D, Bs)
are the homomorphisms of k-algebras associated to ¥y and o, respectively, then homomorphisms of k-algebras
pa: A1 — As and pp: By — By are compatible with the D-measurings if and only if the diagram

A1 L} kM(D,Bl)

lS@A J/kM(D#PB)

A2 L} k,M (D, Bg)
commutes.

Example 2.5. Let A and B be commutative k-algebras.

(1) Letm be a natural number or oo and let Dy, := k(0©) ... ™) be the free k-module with basis {8, ... 0™}
equipped with a k-coalgebra structure given by the homomorphisms of k-modules A: Dy, — D, ®k D,, and
e: Dy, — k defined by

(2.2) AOD)= Y 0 @00 and  £(07) =40
=11 +1i2
foralli=0,...,m. A D,,-measuring ¥, : D,, @z A — B from A to B is equivalent to a higher derivation
5= (6O, ..., 8() from A to B of length m, defined by 5 (a) == 1, (0% @ a) for all i € {0,...,m} and
all a € A.
The k-coalgebra D,, contains the group-like element 0(9). A higher derivation 54 = (51(:)), . .761(47”)) of

length m on A such that (5&?)(a) =a for all a € A induces a D,,-measuring V¥, : Dy Qp A — A from A to

itself defined by ¥, (0 ® a) = JX) (a) for alli € {0,...,m} and all a € A that is unital with respect to the
group-like element 6©) € D,,,.

The k-coalgebra Doy becomes a k-bialgebra with respect to the k-algebra structure given by 1 := 0 and
6 . gU) = (itj)H(H‘j) for all i,j € N. A Dy -module algebra structure on A is equivalent to a unital
iterative derivation (5,(42))2’EN on A.

(2) We consider|[(1) in the special case m = 1. A Dy-measuring 1: Dy ®, A — B is equivalent to a pair (o, 5)
consisting of homomorphism of k-algebras o: A — B and a k-derivation §: A — B, where B is considered
as A-algebra via o (i.e. 0(aa’) = §(a)o(a’) + o(a)d(a’) for all a,a’ € A). This is equivalent to the data
specifying a 1-differential kernel, cf. definition [I.34)

The k-coalgebra Dy contains the group-like element 0©) and a D;-measuring v1: Di ® A — A from A
to itself that is unital with respect to 09 in the sense that i (0(0) ®a) =a for all a € A, is equivalent to a
k-derivation on A.



(3)

(2.3)

(4)
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The k-coalgebra Dy is isomorphic to the k-subcoalgebra k(1,0) of the k-bialgebra D = k[G,] = k[0],
which is the coordinate ring of the additive group scheme G, with k-coalgebra structure given by
Al)=1®1, e1)=1, AQ@)=0®1+1®0 and e(0) =0.
There is a bijection between the set of D-module algebra structures on A and the set of k-derivations on A.
The D-module algebra structure 1a: D ®k A — A corresponding to a k-derivation 64: A — A is given by
Y4(0' ® a) = Y (a) for alla € A and all i € N.

Forn € N let D,, == k{c®,0'...0") be the free k-module with basis {o° o, ... o™} with the k-coalgebra
structure defined by

A(o?) =o' ® o’ and e(d)y =1
foralli=0,...,n. We denote the element o° € Dy, also by 1. A Dy,-measuring {n: Dy @ A — B from A
to B is the same as a family of homomorphisms ot: A — B defined by oi(a) = ,(c* @a) fori=0,...,n
and a € A. The k-coalgebras D,, are k-subcoalgebras of the k-bialgebra D = k[o] with k-coalgebra structure

defined by (2.3) for all i € N. There is a bijection between the D-module algebra structures on A and the
endomorphisms of the k-algebra A.

The coordinate ring D = k[G,,| of the multiplicative group scheme G, over k is the localization k[o, o]
of the polynomial algebra kl[o] over k with k-coalgebra structure defined by equation for alli € Z.
There is a bijection between the set of automorphisms of the k-algebra A and the set of D-module algebra
structures on A. If o4 is an automorphism of the k-algebra A, then the corresponding D-module algebra
structure a: D @, A — A is given by Ya(o' ® a) == o' (a) for alla € A and i € Z.

3. GENERALIZED DIFFERENTIALS

In this section we introduce generalized differentials and show how they specialize to objects introduced in
section [

Notation: Let D be a k-coalgebra, A be a commutative k-algebra, f: A — B be a commutative A-algebra, 14 : DRy,

A— A

be a D-measuring from A to itself, and pa: A — M(D, A) be the homomorphism of k-algebras associated

to 14 via the isomorphism (2.1)).

3.1. Definition and basic properties.
Definition 3.1. (1) We define a commutative A-algebra

OB (a4 = Ald(b) | d € D,b e B)/I,

where Ald(b) | d € D,b € B] is the polynomial algebra over A in the variables d(b) and I is the ideal
generated by the elements

d(b) +d(®") —d(b+V),
d(bb') =Y deay(b) - dez (V).
(d)

d(f(a)) = ¥a(d®a),
(d+d")(b) — d(b) — d'(b) and
(Ad)(b) — A - d(b)
for alld,d € D, bt/ € B, A€ k and a € A. We denote the image of d(b) in Qg/(A,wA) again by d(b). We
also define a homomorphism of A-algebras
pui B = kM(D,QR 4 00), b (d—d(b)),

where the A-algebra structure on kM(D>Qg/(A,¢A)) is induced by pa: A — L M(D, A) and the A-algebra

structure on QIB)/(AWA) that is induced by the natural A-algebra structure on the polynomial algebra Ald(b) |
de D,be B)f

4Note

that p is a homomorphism of A-algebras, since for a € A and d € D we have py(f(a))(d) = d(f(a)) =Ya(d®a) = pa(a)(d).
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(2) If D contains a group-like element 1 and Y4(1® a) = a for all a € A, then Qg/(A,wA) becomes a B-algebra

via b+ 1(b), which we denote by Qg’/l(Aﬂl’A)'

Proposition 3.2. (1) Let h: A — R be a commutative A-algebra,
V:DerB—+ R

be a D-measuring from B to R, which extends the D-measuring ¥va: D @ A — A in the sense that
U(d® f(a)) =h(pa(d®a)) for alld € D and all a € A and let

P: B— kM(D,R)

be the homomorphism of A-algebras associated to U via (2.1)), where the A-algebra structure on  M(D, R)
is given by the composition R M(D,h) o pa. Then there exists a unique homomorphism of A-algebras
o: QB/(A wa) R such that the diagram

(3.6) WM(D QB (440)

Pu
P

B——  M(D,R)
commutes, i.e. there is a bijection
(3.7) Alg 4 (B, kM(D, R)) = Alg4(23 )4,y R), P ¢.

The inverse sends ¢ € AIgA(Qg/(A way B) t0 kM(D, ) o py.
(2) Assume that the k-coalgebra D contains a group-like element 1 and that Y4(1 ® a) = a for alla € A. Let
g: B — R be a commutative B-algebra. Then for every D-measuring
U: DRy B— R

from B to R, which fulfills (1 ®b) = g(b) for all b € B, which extends the D-measuring va: Dy A — A
in the sense that U(d® f(a)) = g(f(¥a(d® a))) for alld € D and all a € A, and which has

P: B— kM(D7R)
as associated homomorphism of A-algebras, the A-algebra structure on xM(D, R) being given by M(D,go
f) o pa, the unique homomorphism of A-algebras ¢: Qg’l(A wa) R such that tM(D,$) o p, = P is a
i

homomorphism of B-algebras. Therefore the bijection (3.7) restricts to a bijection

(3.8) {P € Alga(B,,M(D, R)) | evioP = g} = Algp(Q/ (4.0, B), P 0.
The inverse sends ¢ € Alg (574 .)» R) to xM(D, ) 0 py.

Proof. Let P € Alg4(B, xM(D, R)). We first define a homomorphism of A-algebras

(3.9) Ald(b)|d € D,be B] - R, d(b) — P(b)(d).

This homomorphism vanishes on the ideal I as defined in definition[3.1} This is clear, the only point we are explaining
is the relation : Since P: B — yM(D, R) is a homomorphism of A-algebras and since the A-algebra structure
on xtM(D, R) is given by xM(D,h) o pa, we obtain P(f(a)) = xM(D,h)(pa(a)) for all a € A, ie. P(f(a))(d) =
h(pa(a)(d)) = h(a(d®a)). Therefore the image of d(f(a)) is the same as that of 14 (d® a). Hence gives rise
to a homomorphism of A-algebras ¢: Q5 J(Awpsy — B, which makes the diagram by definition commutative.
At the other side, any homomorphism of A-algebras ¢: Qg J(Apa) R is uniquely determined by its images on the
elements d(b) through the condition xpM(D, ¢) o p,, = P. If conversely ¢: Qg/(A,wA) — R is a homomorphism of A-
algebras, then we define P: B — ; M(D, R) by P(b)(d) := ¢(d(b)) for all b € B and d € D. This is a homomorphism
of A-algebras, since P(f(a))(d) = ¢(d(f(a))) = ¢p(a(d ® a)) = h(a(d @ a)) = xtM(D,h)(pa(a))(d) for all a € A
and all d € D.

Now let g: B — R be a commutative B-algebra and assume that D contains a group-like element 1. If P
fulfills P(b)(1) = g(b), then we also have ¢(1(b)) = P(b)(1) = ¢g(b) and therefore ¢ is the unique homomorphism of
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B-algebras ¢: Qg’/l( Ag) R that fulfills xpM(D, ¢) o p,, = P. Conversely, for every homomorphism of B-algebras
@: QB/(A way) — R the composition (M(D, ¢) o p, fulfills evi 0xM(D, ¢) 0 pu(b) = $(1(b)) = g(b) for allb € B. [

Remark 3.3. Generalized differentials can also be defined in a slightly different way: Assume that D contains a
group-like element 1 and let y: D ®k A — B be a unital D-measuring with associated homomorphism of k-algebras
p: A —  M(D,B). We define Qb as the quotient of Aldb | d € D,b € B]| by the ideal I generated by the

B/ (A)
elements
(3.10) d(b) +d(') —d(b+1b'),
(3.11) d(b') - Zd (1) (0) - d(2)(V'),
(3.12) d(f( )) —1(¥(d®a)),
(3.13) (d+ d")(b) — d(b) — d'(b) and
(3.14) (Ad)(b) — X\ - d(b)
for all b,b € B, all d,d € D, all a € A and all X\ € k, and consider QB/(A v) 05 B-algebra via b — 1b. The
homomorphism

D,1

(3.15) pu: B = xpM(D QB/(Aw))

will be defined as before by p,(b)(d) = db for allb € B and d € D. If g: B — R is a commutative B-algebra and
VU: D®r B— R is a D-measuring from B to R, which extends the D-measuring ¥: D ®, A — B in the sense that
U(d® f(a)) =g(W(d®a)) for alld € D and all a € A, which is unital with respect to 1 € D, i.e. (1 ®b) = g(b)
for all b € B, and which has

P: B— kM(D,R)

as associated homomorphism of A-algebras (the A-algebra structure on  M(D, R) is given by xM(D,g) o p), then
there exists a unique homomorphism of B-algebras ¢: Qg’/l(A ) R such that the diagram

(3.16) WM(D QE}W

Pu

B—LC L, M(D,R)
commutes, i.e. the map

(3.17) {P € Alga(B,,M(D, R)) | evioP = g} — Alg(Q7 4 4, R); P9

Ay

is a bijection. The inverse sends ¢ € AIgB(Qg’/l(A e R) to xM(D, ¢) o py.

Proof. Given P € Alg 4 (B, ypM(D, R)), we first define a homomorphism of B-algebras
Ald(b) |d € D,be B] -+ R, d(b) — P(b)(d),

where A[d(b) | d € D,b € B] is considered as B-algebra via b — 1(b). This homomorphism vanishes by assumption
on the ideal I as defined above. This is clear, the only point we are explaining is the relation (3.12)): Since
P: B — ;M(D, R) is a homomorphism of A-algebras, we have P(f(a)) = rM(D, g)(p(a)) for all a € A, i.e.

P(f(a))(d) = 9(p(a)(d)) = g(¥(d®a)) = V(1@ Y(d®a)) = P(P(d @ a))(1).
Therefore the image of d(f(a)) is the same as that of 1(¢¥(d ® a)). Hence this homomorphism gives rise to a
homomorphism of B-algebras ¢: g /1( Ay R, which makes the diagram (3.16)) by definition commutative. At

the other side, any homomorphism of B-algebras ¢: Qg /1( Ay) R is umquely determined by its images on the
elements d(b) through the condition xpM(D, ¢) o p, = P. O
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3.2. x s-bialgebras and prolongations. We briefly recall the definition of x 4-bialgebras, which were introduced
by Sweedler (cf. [Swe74]), following closely the exposition of Masuoka and Yanagawa in [MYT3].

Assumption 3.4. We assume that k is a field and let A be an A-ring that is projective as left A-module.

Its A-ring structure makes A into an A-A-bimodule. We consider the tensor product of the left A-module A with
itself over A (ignoring its right A-module structure, but denoting it by abuse of notation by A ®4 A). Its subset

n n n
Axq A= {Zai(@bi GA@AA’ Zail‘(@bi :Zai®biaj‘v’xeA}.
i=1 i=1 i=1
becomes an A-ring with respect to a — a ® 1 for all a € AE| We assume in addition that A4 is an A-coalgebra with
respect to At A - A®4 Aand e: A — A.

Definition 3.5. We call A a x 4-bialgebra if the following hold:
(1) A(A) C A x4 A,
(2) A: A= A®4 A is a morphism of A-ring,
(3) e(1) =1 and
(4) (ab) = e(ae(b)) for all a,b € A.

If M and N are left A-modules (which we also consider as symmetric A-bimodules), then the tensor product
M ®4 N becomes a left A-module with respect to the action given by

(3.18) a— (men) = Z(a(l) —m)® (ap) —n)
(a)

for all « € A, m € M and n € N. This is well defined because of condition above and this action is associative
by condition From condition and we obtain that A is a left A-module with respect to the action given
by
(3.19) a—a:=¢(aa)
for all & € A and a € A.

We recall the following results of Masuoka and Yanagawa.

Proposition 3.6 ([MY13| Proposition 2.2]). Let A be a x 4g-bialgebra. Then the category of left A-modules is a
monoidal category with respect to the product given by M @4 N for any two left A-modules M and N, considered
as left A-module via , and the unit given by A, with the left A-module structure given by . If A is
cocommutative as A-coalgebra, then this monoidal category is symmetric with symmetry given by the interchange of
factors.

If D is a k-bialgebra and A is a commutative D-module algebra, then the smash product A#D (cf. [Swe69, p.
153]) is an A-ring via A — A#D,a — a#1 and an A-coalgebra via the base extension of D from k to A.

Lemma 3.7 ([MY13, Lemma 2.3]). If D is a cocommutative k-bialgebra and A is a commutative D-module algebra,
then the smash product A#D is a X a-bialgebra.

Under the hypothesis in lemma [3.7] the smash product A#D is a x 4-bialgebra and by proposition [3.6] the
category of left (A#D)-modules is a symmetric monoidal category with respect to the tensor product over A
considered as left A-module via and the unit with symmetry given by the interchange of factors. We
refer to this symmetric monoidal category as the category of left (A#D)-modules over A.

Remark 3.8. (1) Let m be a natural number or oo and D,, be the k-coalgebra defined in example . By
this example, a higher derivation 6 4 = (555))2-:07,__,,” of length m gives rise to a D-measuring ¥, : D, QpA —
A from A to itself. Given a commutative higher differential ring (A,04), a higher differential module
over (A,04) is an A-module M together with a family of additive maps (6(i): M — M)i=o,....m such that
oW (am) = D iy tis 5%1)(a)8(i2)(m) for alla € A and m € Mﬁ A morphism from a higher differential

5A more systematic introduction of A x 4 A is given in [Swe74].
63ome authors require in addition that 8(9) = id,,.
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module (M, 0nr) to (N,0n) over (A,04) is a homomorphism of A-modules f: M — N such that 81(\1,) of=
fo 6](\2) for all i = 0,...,m. A higher differential module (M, (6(1))i:0,,,.,m) is unital if 00 = idy. If
m = oo, then a higher differential module (M, (0");cy) is iterative if 0 o 9U) = (itj)a(i"’j) for all
i,j € N. The category of higher differential modules over (A,d4) is monoidal, the product of (M,0p) and
(N,0n) being the A-module M ® 4 N with higher derivation 0 = (8(1‘))1-:0,“_,7,1 defined by 0 (m®n) =
D iy tin 81(\141)(771)@61(\1,2)(71) forallm@n € M®a N and alli € {0,...,m} and unit (A,04). It is moreover
symmetric with respect to the interchange of factors. The unital (and/or iterative, in the case m = oo ) higher
differential modules over (A,04) form a full subcategory that is again symmetric monoidal. If m = oo, then
the symmetric monoidal category of left (A# Dy )-modules over A is isomorphic to the category of unital
iterative differential modules over (A,d4). Commutative monoids in the symmetric monoidal category of
left (A# Dy )-modules over A are commutative unital iterative differential (A,04)-algebras.

(2) Let D = k[G,] be the coordinate ring of the additive group scheme G, over k. Let (A,04) be a commutative
differential k-algebra. By example a D-module algebra structure ¥a: D ®p A — A is associated
to §4. The smash product A#D is isomorphic to the ring of differential operators A[0], which is the ring
consisting of elements of the form a,;, 0™ + ---+ a10 + ag with a; € A and commutation relation defined by
0a = ad + da(a) for alla € A. If A contains an element a such that d4(a) # 0, then the ring A[J] is not
commutative. A differential module over (A,d4) is an A-module together with an additive map Opr: M — M
such that Opr(am) = da(a)m + adyr(m) for alla € A and m € M. A morphism from a differential module
(M, 0p) to (N,0n) is a homomorphism of A-modules f: M — N such that Oy o f = fo0On. The category
of differential modules over (A,d4) is monoidal, the product of (M,0x) and (N,On) being given by the
tensor product M ® 4 N with derivation 0 defined by O(m@n) = Oy (m) @n+m Iy (n) and the unit being
(A,04), cf. [vdPS03, Chapter 2]. It is furthermore symmetric with respect to the interchange of factors. The
symmetric monoidal category of differential modules over (A,d4) is isomorphic to the symmetric monoidal
category of left A#D-modules over A as defined above. Commutative monoids in the category of A[J]-
modules over A are commutative differential (A,d4)-algebras, cf. definition .

(3) Let D be the coordinate ring k[G,,] = klo,071] of the multiplicative group scheme G,, over k. As noted
in example there is a bijection between the set of automorphisms of the k-algebra A and the set of
D-module algebra structures on A. Let o4 be an automorphism of the k-algebra A and Ya: D @ A — A
be the corresponding D-module algebra structure on A. The category of inversive difference modules over
(A,04) consists of A-modules M together with an automorphism X of the abelian group M such that
Y(am) = ga(a)X(m) for alla € A and m € M. A morphism of inversive difference modules from (M, r)
to (N,Xn) is a morphism of A-modules f: M — N such that Xy o f = foXy. The category of inversive
difference modules over (A,o4) is monoidal, the product of two inversive difference modules (M, X yr) and
(N,XN) being the A-module M @ 4 N with the automorphism ¥ defined by X(m ® n) := Xp(m) @ Tn(n)
for alm®n € M ®4 N and the unit being (A,04). It is symmetric with respect to the interchange of
factors. The symmetric monoidal category of inversive difference modules over (A, o) is isomorphic to the
category of left (A#D)-modules over A.

(4) Let D be the k-subbialgebra k|o] of k|G,,] = k[o,07t]. Then commutative D-module algebras are in bijection
with commutative k-algebras A equipped with an endomorphism o4, cf. example . Let (A,04)
be a commutative difference algebra over k and vYa: D @ A — A be the associated D-module algebra
structure on A. The category of difference modules over (A,04) consists of A-modules M equipped with
an endomorphism ¥ of the abelian group M such that X(am) = o4(a)X(m) for alla € A and m € M and
morphisms defined as in the case of inversive difference modules. This category is a symmetric monoidal
category in a similar way as the category of inversive difference modules. It is isomorphic to the symmetric
monoidal category of left (A#D)-modules over A.

Proposition 3.9. Let I be a directed set and v: I x I — I be a map such that for all i,j € I we have i < (i, 7)
and j < ~(4,7). Let k be a field and let D be a cocommutative k-bialgebra that is the direct limit of a directed system
of k-subcoalgebras (D;)icr such that D;D; C D.; jy for all i,j € I and such that every D; contains the unit 1 of
D. Let further v4: D ®, A — A be a D-module algebra structure on A and denote the D;-measurings from A to
itself induced by Ya by Ya,i: D; Q A — A.



22 FLORIAN HEIDERICH

(1) Then the B-algebras (Qg;v(lA on v)) , form a direct system and there is an isomorphism of B-algebras
Wai)/ie
D1 ~ 1 oDyl
(3:20) Vg ama) = hﬂIQB/(A,wA,n'
1€

Furthermore, for all i,j € I the k-coalgebra D; measures Q[B)';’(il Was) to QLB)}EAJ)wi i) and Qg’/l(A wa)
’ N s (3,4 ,

becomes a D-module algebra. Moreover, Qg’/l(A wa) is a commutative monoid in the symmetric monoidal
category of left (A#D)-modules over A with respect to the (A#D)-module structure

) D,1 D,1
v (A#D) ® QB/(Ava) - QB/(A,’LL'A)'

(2) For every commutative monoid (S,vs: (A#D) ® S — S) in the category of left (A#D)-modules over A
and every homomorphism of A-algebras g: B — S there exists a unique homomorphism of monoids of left
(A#D)-modules over A

G (4,0 V) = (S,05)
such that the diagram

PO D1
B =954,

\ G
g

S

commutes, where pg is the B-algebra structure of Qg’/l(A ba) This induces a bijection between the set of

homomorphisms of monoids of left (A#D)-modules over A from (Qg’/l(Ava),\If) to (S,vs) and the set of
homomorphisms of A-algebras from B to S.

The commutative monoid (Qg’/l(A)wA), U) in the category of left (A#D)-modules over A is unique with
this property.

Proof. For i € N we denote by I; the ideal of A[db | d € D;,b € B] that is generated by the elements
d(b) +d(b) —db+ V),
db) = " d)(b) - dezy (V),
(d)

d(f(a)) —ai(d®a),
(d+d')(b) — d(b) — d'(b) and
(Ad)(b) — A -d(b)
for all d,d’ € D;, b,/ € B, A\ € k and a € A. Then QIB’;’({WM) >~ Aldb | d € D;,b € B]/I;. If i < j are elements
of I, then there is an injection from A[db | d € D;,b € B] into A[db | d € D;,b € B] and the image of I; under
this injection is contained in I;. Therefore we obtain an injection Q[B);’({A,m,i) — QE;&Z,wA,j) and the isomorphism
(13.20). We consider the morphism of k-modules

D; @, Aldb| d € D;,b € B] - Qg;;x;ﬁﬂw

d® a(dybz) ... (dybn) = Y diay(f(a)) - (da)d)(ba) - - (dimydy,) (bn),
(d)

using Sweedler notation, for all a € A, by,...,b, € B, d € D; and ds,...,d, € D;. Since the image of D; ®j, I; is

. D (i ’)71 . N
zero in Q.7 we obtain a morphism of k-modules
B/(Aa,~,5))’ p

. .- D). Dj,1 Dyt
Vit Di @k Qpiama ;) = UBJ(Aa )
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~y(ig)0 1

BJ(Aba i) By the universal property of the direct

which is by construction a D;-measuring from QP B / ( A wa,) O o?

limit

D,1 o~ ‘ . D1 ~ 1
D@k 54,94 = IED% Bk IQQB/(A,WJ) = 1%)111”<D @ U apa )
1€ ]

we obtain a morphism ¥: D ®j, P - 0P such that the following diagram commutes

B/ Apa) B/(Aw )

Vi Do igyol
Di @y, QB/(A ba,j) QB/(Aa'(/}A,'y(i,j))

D.,1 v D.,1
D& Qp)ap) " jawa

The morphism ¥ is a D-measuring from Qg’/l( Apa) 1O itself, since the \il” are D;-measurings. By definition ¥

makes QLB)’/l( A,) 2180 into a left D-module. We extend this to a left (A#D)-module structure
, D1
W (A#D) & QU )~ Uian

Let S be a commutative monoid in the symmetric monoidal category of left (A#D)-modules over A with (A#D)-
module structure given by ¥g: (A#D) ® S — S. We denote the A-algebra structure on S by h: A — S. Let
g: B — S be a homomorphism of A-algebras. We define

D1
G: QB/AwA)_)S

(a#d) @ w i a - U(d @ w).

by
Garda(bz) - .. dn(bn)) = h(a1) - s((1#d2) @ g(b2)) - - .. - Ys((1#£dn) @ g(bp))
for all a; € A, all by,...b, € B and all da,...,d, € D. If furthermore ¢ € A and d € D, then we have

G (V((a#d) ® ardy (bz) cod (b))
= 603 dy 7)) ) - ) 0)

h(a Z VYs((1#day) @ g(f(a1))) - vs((1#d2)ds) @ g(b2)) . .. Ys((1#d ) dy,) @ g(bn))
(d)

a) Y s((1#da)) © h(ar)) - Ys(1#dea) @ Ps(1#ds) © (b)) - s (L#d(m)) © Ys((1#d;,) ® g(ba)))
(d)
= h(a) - ¥s((1#td) @ h(a1) - Ys((1#dy) ® g(b2)) - .. ¥s((1#£d;,) @ g(bn)))
= ¥s((a#td) @ Gardy(bs) . .. d;, (bn))),

so that G is a morphism of left (A#D)-modules. By definition G is multiplicative and respects the units. Therefore
G is a morphism of monoids of left (A#D)-modules over A. In order to show that G: Qg’/l(A wa) S is unique,

let G': Qg /1( A,y — S be another morphism of monoids of left (A#D)-modules over A such that G’ o pg = g.

Then we have O'(a - d(8)) = /(¥ ((afkd) ® 1)) = vs((atd) © C'(16)) = vs((askd) ® g(b) = s ((attd) @ G(15)) =
G(U((a#d) ® 1b)) = G(a - d(b)) for all a € A, all b € B and all d € D, and therefore G = G. If conversely
G: Qg}l(A,¢A) — S is a morphism of monoids of left (A#D)-modules over A, then G o py is a morphism of A-
algebras from B to S.

The uniqueness of (Q B /( Apa) ) follows from its universal property. O

Remark 3.10. (1) If D is a k-bialgebra, then the finitely generated k-subcoalgebras of D form a directed set
and the conditions at the beginning of the last proposition can always be satisfied.
(2) Let I be the set N of natural numbers with the natural partial order.
(a) The free k-module D; = k{d°,... 0% is a k-subcoalgebra of D = k[G,] = k[0] for all i € N, cf.
example , We recover pmposition from pmposition cf. example for details.
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(b) The free k-module D; := k{c®,... 0% is a k-subcoalgebra of D = k[o] for all i € N, where o/ are
group-like elements for all j € N. We recover proposition[I.39 from proposition[3.9, cf. ezample
for details.

(c) The k-bialgebra k(0 | i € N) defined in example is the direct limit of its k-subcoalgebras
(B0, 00))en. We recover propositionfrom pmposition cf. example for details.

(d) More generally, any iterative Hasse-Schmidt system D = (D;)ien in the sense of Moosa and Scanlon,
¢f. [MS11l, Definition 2.2], gives rise to a direct system of cocommutative k-coalgebras (D;(k)*)ien such

that D :=lim,  Di(k)* is a k-bialgebra, cf. [Heil3h].

3.3. Examples.

3.3.1. Derivations and higher derivations.

Example 3.11. Let m be a natural number and let D,,, = k(ﬂ(o), . ,Q(m)> be the k-coalgebra defined in example
, If Y : Dy, Q1 A — A is a Dp,-measuring from A to itself, then we obtain

QR apy = AOO®),...,0" () | be B/,

where I is the ideal generated by

0D (b +) - 0D (1) — 0O W), 0D@Y)— Y 000 W) and 09 (f(a)) — Ym0 @ a)

i1+io=1

for allb,' € B, alla€ A and alli=0,...,m. A D,,-measuring {,,: D, @, A — A from A to itself is equivalent
to a higher derivation 6 4 = (51(40), . ,(51(4m)) on A of length m, defined by 51(;) (a) == Y (0D @a) for alli € {0,...,m}
and all a € A.

The k-coalgebra D,, contains the group-like element 6°). A higher derivation 4 = (51(5), e 751(47”)) of length m

on A such that 652)(@) = a for all a € A induces a D,,-measuring ¥, : Dy, @ A — A from A to itself defined by

P (0D ® a) = 5X)(a) for alli € {0,...,m} and all a € A, which is unital with respect to the group-like element

(0) D00 . 0 Dy, ,0® . )
0\") € D,,. The B-algebra structure on QB/(’A by 18 given by b — 0O (b) and QB/(’A b)) 15 isomorphic to the

B-algebra HS'5/(45,) defined by Rosen, cf. definition|1.15 The bijection (3.7) specializes in this case to (1.12)).
If the D,,-measuring 1, : Dy, @1, A — A is trivial, i.e. (09 ® a) = a- ;¢ for all i € {0,...,m}, then

©)
QD7“9 A ) specializes to the B-algebra HSB/A defined by Vojta, cf. deﬁmtzon and the bijection (3.7) specializes

to (L.6) (in the case where m is a natural number, the case m = oo is similar).
Letdg = (51(41))2-6N be a unital iterative higher derivation on A, Dy, = k(G(i) |ie€N)andts: Doo®r A — A be the

corresponding D, -module algebra structure on A, cf. example . Then the Do -module algebra (Qg‘/"”:’(;;), U)
s isomorphic to the unital iterative differential ring (HSOBO/(A,(;A),d) defined by Rosen, cf. definition and
lemma m By remark commutative monoids in the symmetric monoidal category of (A# Dy )-modules
over A are commutative unital iterative higher differential (A, d4)-algebras and we recognize proposition as a

corollary of proposition[3.9

Example 3.12. If m =1 in ezample then
Dy = k(09,0 = k(1,0).

Let Yo: D1 @, A — A be a Dy-measuring from A to itself, which is equivalent to a pair (c4,04) consisting of an
endomorphism o4 of the k-algebra A and a k-derivation 05: A — A, where A is considered as A-algebra via o4
(i.e. da(aa’) =0a(a)oa(a’)+0oa(a)da(a’)). The homomorphism of k-algebras pa associated to 14 is then given by
the homomorphism A — A[t]/(t?) that sends a € A to oa(a) + 6a(a)t. We have

QD

B/(Aapa) = = A[1(b),0(b) | b € B]/I,
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where I is the ideal generated by
1(b+b) —1(b) — 1(V), Ab+10b')— o) —o),
1(bY) — 1(b)1(V), ADY') — 1(b)o(") — d(b)1(D),
1(f(a)) = Ya(l®a), I(f(a)) —=a(0®a)
forallae A and b € B.
Let h: A — R be a commutative A-algebra. Then  M(D1, R) is isomorphic to R[t]/(t?), which we consider as

A-algebra via the homomorphism M(D1,h) o pa, which sends a € A to h(ca(a)) + h(da(a))t. In this case the
bijection (3.7) takes the form

(3.21) Alg (B, R[t]/(t*)) = Alga (g} R), P~ ¢.

(Aa)’
The data specified by an element ¢ € AIgA(Qg}(A wA),R), or in view of (3.21) equivalently by an element P €
Alg . (B, R[t]/(t?)), is given by a homomorphism of k-algebras ¥: B — R and a k-derivation 9: B — R, where R

is considered as B-algebra via X: B — R (i.e. O(bb') = 0(b)X(V') + X(b)O(V')), such that the diagrams

A5 A and A4
el o
B—2LR B—2,nR

commute.

Let A @) B be a 1-differential kernel in the sense of Johnson (cf. subsection . We define the D1-measuring
V: D1 @, A — B byv(l®a):= f(a) and (0 ® a) == §(a) and let p: A — B[t]/(t?),a — f(a) + §(a)t be the
associated homomorphism of k-algebras. The homomorphism of A-algebras p,,: B — Qg}’(lA,w) (cf. ) provides
a prolongation of (f,d) consisting of the ring homomorphism

9: B—= QR s b 1b (= pu(b)(1)
and the derivation
9: B— Qi o b 0b (= pu(b)(9)).

’ 6/
This prolongation is universal in the sense that for any prolongation B M C' there is a homomorphism of
B-algebras h: Qg}’(i‘ ) C' such that ¢ =hog and &' = hod. In fact, if (¢’, ') is such a prolongation, then we
have g’ 06 = &' o f and therefore

P': B —  M(Dy,C") (2 C'[t]/(t%)), b—g'(b)+ 0 (bt
is a homomorphism of A-algebras, when we consider xM(Dy,C") = C'[t]/(t?) as A-algebra via xpM(D1,g') o p, and
satisfies co P! = g', where e: C'[t]/(t?) — C is the homomorphism of C-algebras defined by £(t) :== 0. By remark
there exists a unique homomorphism of B-algebras ¢: Qb1 — C" such that P' = yM(D1,®) o p,. This means

B/(A)
that ¢ = ¢ o f and &' = ¢ o . Therefore proposition becomes a corollary of remark ,

The k-coalgebra Dy contains the group-like element 1 = 0. If 4(1 ® a) = a for all a € A, then the B-algebra
Qg}’(i‘ ) B8 isomorphic to the quotient of B[O(b) | b € B] by the ideal generated by
b +b") —a(b) —o(b'), oY) —bo(b) —b'0(b) and O(f(a)) — f(a(0®a))

for allb, b’ € B and all a € A, which is isomorphic to the B-algebra SymB(Q}B/Z)/IfO(;A as defined in subsection

cf. remark[1.3
Now assume that R is a commutative B-algebra via g: B — R. Then the bijection (3.8) takes the special form

(3.22) {P e Alg,(B, R[t]/(t*)) | e o P= g} = Alg(Symp(Qpz)/Ijosa, R), P+ ¢,

where : R[t]/(t?) — R is the homomorphism of R-algebras defined by e(t) = 0. An element P: B — R[t]/(t?) of
the set on the left hand side of (3.22) is given by P(b) = g(b) 4+ 9(b)t with 8 € Ders, (B, R). We recover lemmal[Il.3
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If the Dy-measuring Ya: D1 @ A — A is trivial (i.e. Ya(1®a) = a and Yv4(0 ® a) = 0 for all a € A),
then the B-algebra Qg}&yw) is isomorphic to SymB(Q}B/A), where Q}B/A 1s the module of Kahler differentials, cf.
subsection and we recover (1.2) from .

The bijections and (3.22)) appear as the middle horizontal arrows in the diagram in remark.

Let (A,04) be a commutative differential ring that is a k-algebra and let D = k[G,] be the coordinate ring
of the additive group scheme G,. Then A is a D-module algebra with respect to ¥a: D ®, A — A defined by
Ya(9' ® a) = 64 (a) for alla € A and all i € N. As noted in remark the symmetric monoidal category of
differential modules over (A,d04) is isomorphic to the symmetric monoidal category of left (A#D)-modules over A
with respect to the product defined in and commutative monoids in the category of left (A#D)-modules are
commutative differential (A, )-algebras. Therefore we recognize pmposition as a corollary of proposition .

3.3.2. Endomorphisms.

Example 3.13. Let D = k(1,0) be the free k-module generated by two elements 1 and o with the k-coalgebra
structure defined by A(1) =111, (1) =1, A(o) =0 ®0 and e(o) = 1. A unital D-measuring Ya: D Q@ A — A
from A to itself is the same as an endomorphism oa of the k-algebra A defined by oa(a) = Ya(oc ® a). The

B-algebra QB/(Aw ) has the form

Q0w = AlLD),0(b) | b€ B)/I,
where I is the ideal generated by the elements

o(b+V) —a(b) —o(t), o(bb') — o (b)o(b), o(f(a)) —Yalo@a)
1(b+b") —1(b) — 1(V), 1(bb") — 1(b)1(b"), 1(f(a)) —a
for all b,V € B and all a € A. It is isomorphic to
(B®z B)/J.

where J is the ideal generated by the elements 1 ® f(a) —oa(a) ® 1 for all a € A, via the isomorphism
(B®z B)/J = QB a0, by @ by > byo(by).
We generalize the previous example:

Example 3.14. For n € N, let D,, == k{c®,a'...0") be the free k-module with basis {c°,0',... o™} with the
k-coalgebra structure defined by

(3.23) Ao =0'®c' and e(o’) =1

for alli=0,...,n. We denote the element ¢° € D,, also by 1. Let ¢,,: D, ®, A — A be a D,,-measuring from A
to itself and (& ')l 0 n be the family of endomorphisms 6°: A — A defined by 6 (a) == p(c* ®a) fori=0,...,n
The B-algebra P has the form

Qpiia, = Alo’(b),0'(b),...,0"(b) | b € B]/I,

where I is the ideal generated by the elements
al(b+ V) —ol(b) — ' (b)), o' (b)) —c'(b)a' (b)) and o'(f(a)) —Yn(c' ®a).
for allb,b' € B, alla € A and alli € {0,...,n}.
In the proof of proposition rings By, are defined as

B, =B®s°B®s--®47 B,
cf. (L.18)). There is an isomorphism of A-algebras
(3.24) By = Qa0 ®a0) @ (b1 @a1) @+ @ (by ® an) = 0%(bo) - ag - o' (b1) - a1 -+ 0™ (b) - an
with inverse given by

Qithgy = By D)= (@)@ 2le)ebel)e(1el)e--e(1e1),

B/Aw)

foralli=0,...,n and b € B, where b® 1 is in the factor B of By,.
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The k-bialgebra D = k[o] with k-coalgebra structure defined by for all i € N is the direct limit of the
k-subcoalgebras (D;)ien, which fulfill D;D; C D, ; for all i,j € N. Let (A,04) be a commutative difference ring
and Ya: D ®@p A — A, 0" ®a — o'y(a) be the associated D-module algebra structure on A, cf. example .
As noted in remark the symmetric monoidal category of difference modules over (A,o4) is isomorphic to
the symmetric monoidal category of left (A#D)-modules over A. Therefore the category of commutative difference
(A, 04)-algebras is the isomorphic to the category of commutative monoids in the category of left (A#D)-modules
over A. The isomorphisms induce an isomorphism of difference (A, o 4)-algebras between QE}I(A,wA) and
the difference (A, o4)-algebra [c]aB defined in pmposition and we recognize this proposition as a corollary of
proposition [3-9

3.3.3. Skew-derivations.
Example 3.15. Let D be the free k-module k(1,0,0) with basis {1,0,0} and k-coalgebra structure defined by
(3.25) Al)=1®1, e1)=1, A(c)=0®0, ¢c(o)=1 A(Q)=0®1+0109, £(9):=0.

Then defining a D-measuring from A to itself amounts to give an endomorphism o4 of the k-algebra A and a
oa-derivation 04 on A, i.e. a morphism of k-modules 04: A — A such that 0a(aa’) = da(a)a’ + ca(a)da(a’) for
all a,a’ € A.

The approach to skew-derivation taken by André in [And01] is different. Instead of working with genuine skew-
derivations, he considers modules over a commutative difference ring (A, 04) as sesqui-modules with respect to o4,
equipped with a normal derivation.

3.3.4. [Iterative q-difference operators. Hardouin introduced iterative g-difference operators in [Har10]. We do not
give a detailed description of the generalized differentials in this case but only mention that commutative rings with
iterative g-difference operators can be described as commutative D-module algebras for a cocommutative bialgebra
D as shown by Masuoka and Yanagawa, cf. [MY13]. Therefore our construction and propositions apply also in this
case.

3.4. Functorial properties.

3.4.1. Let v: B — B’ be a morphism of A-algebras. Then the morphism of A-algebras
Aldb|d € D,be Bl — Aldb' | d € D,b" € B'], ad(b) — ad(v(b))
induces a morphism of A-algebras
D D
If D contains a group-like element 1 and ¥ 4(1 ® a) = a for all a € A, then (3.26) is a morphism of B-algebras
D1 D,1
Q - Qg /

B/(Aa) Apa)’

where the B-algebra structure on Qg,’} (Aa) is obtained from its B’-algebra structure and v: B — B’. The diagram

KM(D, Qg/(A,wA)) — »M(D, Qg’/(A,wA))

] ]

B z B’

commutes, where the upper horizontal arrow is induced by (3.26). These morphisms induce a morphism of B’-
algebras

D1 D1
vp/B/A* Lpjama) @8 B = Qplsap.)
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3.4.2. Let u: A — A’ be a morphism of commutative k-algebras and f': A’ — B’ be a commutative A’-algebra.
Let 14 be a D-measuring from A to itself and 14, be a D-measuring from A’ to itself extending v 4, i.e. such that
the diagram

Dy A4 A

idp ®u1\ MT
Pa

D, A——— A
commutes.
We consider the morphism of A-algebras A[db | d € D,b € B] — A’'[db | d € D,b € B] that is induced by w.
It sends the element d(f'(u(a))) — v¥a(d ® a) to d(f'(u(a))) — u(a(d ® a)) = d(f'(u(a))) — Ya (d ® u(a)), which
vanishes in Qg J(Aba)’ Therefore we obtain a morphism of A-algebras
. 0D D
uB/A/A* B j(awa) = UBar -

3.4.3. Given a diagram of commutative k-algebras

and two D-measurings
1/1A:D®kA—)A and ¢A/:D®kA/—)AI,

that are unital with respect to a group-like element 1 € D, the diagram

kM(Dvpr/g/a) D1 kM(Dupryarya)

D1 D,1
MDD, Qg ) @8 BY) ——————eM(D, Qpy 4 ) —————:M(D Qg 40 y,)
WM(D, Q2 )®p B’ pu pu
2B/ (Aaa)
pu®1
T v idB/
B B’ B’

commutes.
These are analogues of statements in [Gro64, Chapitre 0, 20.5].

4. REVIEW OF PROLONGATION SPACES

In this section we review the tangent bundle as well as several constructions of jet and prolongation spaces due
to Buium, Rosen and Vojta.

Notation: Let A be a commutative ring and f: A — B be a commutative A-algebra.

4.1. The tangent bundle. The tangent bundle of X = Spec B over Y = Spec A is by definition the B-scheme
Tx/y = Spec SymB(QlB/A)a

where Q7 /A is the module of Kahler differentials as defined in subsection cf. [Gro67, §16.5]. We denote Tx/y

also by Tp/4.

4.2. Relative tangent bundle. Given a derivation d4: A — A, we define the relative tangent bundleﬂ of X =
Spec B over Y = Spec A with respect to 4 as

Tx/(v.54) = Spec SymB(Q}a/z)/Iém
where I5, is the ideal of SymB(Q}B/Z) generated by d f(a) — f(da(a)) for all @ € A as in subsection

"This is maybe not a standard notation.
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4.3. Vojta’s scheme of jet differentials. Vojta defines “schemes of jet differentials” for arbitrary schemes in
[Voj07, §4]. Here we review his construction in the case of affine schemes.

Definition 4.1. The scheme of m-jet differentials of Spec B over Spec A is defined as the B-scheme
Jm(B/A) = Spec HSE 4,
where HS'g 4 is the B-algebra of divided differentials (cf. definition ,

Theorem 4.2 ([IKO03| 2.8], [Voj07, Theorem 4.5]). The scheme Jp,(B/A) represents the functor from A-schemes
to sets defined by
Z + Scha(Z x4 A[t]/ (™), Spec B)

in the case m € N and by
Z + Sch4(Zx 4A[t]), Spec B)
in the case m = oo, i.e. for every A-scheme Z there are isomorphisms
(4.1) Scha(Z x4 A[t]/(tm“), Spec B) = Scha(Z, J,(B/A))

and
Scha(Zx aA[t]),Spec B) = Scha(Z, Jo(B/A)),

respectively.
Remark 4.3. (1) Ishii and Kollar call J,,(B/A) the scheme of m-jets of X = Spec B and Jo,(B/A) the space
of arcs of X.

(2) By remark the B-scheme J1(B/A) is isomorphic to the tangent bundle Tp /4 as defined in subsection.

4.4. Buium’s jet spaces. Buium defines jet spaces in [Bui93l 9. Appendix]. We briefly recall his definition.
Let A be a commutative Q-algebra and §4: A — A be a derivation. We define A,, = A[t]/(t™T1), Y := Spec A
and Y™ := Spec A[t]/(t™*!). We denote by p;: Y™ — Y the morphism induced by the inclusion

A— A, a—a.

and by pso: Y™ 'Y the morphism induced by the homomorphism

(4.2) e:A— A, a— Z Ai('a)t'.
i=0 ’

Given an A-scheme X, we consider the functor
G:Schy — Set, Z s Schua(Z xy Y™, X),
where Y (™) in the fibre product is considered as Y -scheme via p; and Z xy Y ("™ is considered as Y-scheme via the

composition Z xy Y™ — V(M) 220y The functor G is representable, i.e. there exists an A-scheme jet,, (X/Y,64)
such that for every A-scheme Z there is a bijection

(4.3) Scha(Z, jetm(X/Y,84)) = Scha(Z xy Y™ X).

Remark 4.4. If the derivation 4 on A is trivial, i.e. if da(a) = 0 for all a € A, then Buium’s jet spaces
jetm (X/Y,04) coincides with Vojta’s scheme of m-jet differentials Jp,(B/A).

4.5. Rosen’s prolongation spaces. Rosen defines prolongation spaces of schemes in [Ros08]. We recall his
definition in the affine case.

Definition 4.5. Let A be a commutative ring with higher derivation §4 = (51(;))ieN and let X = Spec B be an affine
A-scheme. The m-th prolongation of X is defined as the B-scheme

P (X/(A,d4)) = Spec HSE /(a.64) -
The B-schemes (P, (X, (A,04)))men form an inverse system and we denote the inverse limit by

Poo(X/(Aa 5A)) = @1 Pm(X/(Av 5A))
meN
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Proposition 4.6 ([Ros08, Theorem 2.4]). Let A be a commutative ring with higher derivation d4 = (51(:))1-61\; and
let X = Spec B be an affine A-scheme. For all m € N the scheme P,,(X/(A,04)) represents the functor

Sch4 — Set
Z + Scha((Z x 4 Spec A,,)~, X),

where (Z x 4 Spec An,)™ is an A-scheme via
(Z x 4 Spec A,,)~ — Spec Ay, 5 Spec A,

where e: Spec A,, — Spec A is the morphism induced by the ring homomorphism

e:A— A, ar ZJX)(a)t
i=0
i.e. for every A-scheme Z there is a bijection
(4.4) Scha(Z, P (X/(A,64))) = Scha((Z x 4 Spec Ay)™, X).
Proof. Let Z = Spec R be an affine A-scheme. Then using (|1.12]) we have
Scha(Z, Prn(X/(A,04))) = Pr(X/(A,04))(R)

= (Spec HSE/(4,6.,)) (1)

= Alg,(HSE/(a,5,), 1)

= Alg, (B, Ry)

=~ Alg,(B,R®4 Ap)

=Scha((Z x4 Spec Ap,)™, X).

]

(1)yi
Remark 4.7. (1) If A is a commutative Q-algebra, 5(Al): A — A is a deriwation and 64 = ((6*‘,) )ieN is the

induced higher derivation on A, then the prolongation space P, (X/(A,04)) as defined by Rosen coincides
with the jet schemes jet,,(X/Y, 61(41)) defined by Buium, where Y = Spec A. The defining isomorphism
(4.3) corresponds to .

(2) Ifm=1andifés = (51(5), 61(41)) is given by 61(5) =1id4 and a derivation 51(41) on A, then by remark the
prolongation space Py(X/(A,d4)) = jet1(X/Y, 51(41)) is isomorphic to the relative tangent bundle T
as defined in subsection[].3, where Y := Spec A.

X/(v,65)

Example 4.8. Letm =1, 64 = (id 4, 61(41)), X = Spec Alzq, ...
and R be a commutative A-algebra. Then we have

sl /(Q1, - - ., Qs) with polynomials Q; € Alxy, ..., 2]

(4.5) Pr(X/(A,04))(R) = Alg 4 (A1, ..., 2] /(Q1, -, Qs), Ba).
A homomorphism of A-algebras from Alzxq,...,x,]/(Q1,...,Qs) to Ry is given by the images rgo) —H"gl)t, e ,réo) +
rﬁll)t of x1,..., Ty In Ry such that the polynomials Q; vanish on them. This latter condition means (remember that

the A-algebra structure on Ry is induced by the truncated Taylor homomorphism e: A — Ay) thaﬁ

0= Qe( + ’I“(l)t 7"(0) + T(l)t)

(7)
= Qi) +Zg§f D R R A (s KA )12

5
8By Qf and by Q, %a we denote the polynomials obtained from Q; by applying e and 5( ) to the coefficients, respectively.
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where QS denotes the image of Q; under the homomorphism Alxy,...,x,] = A1[z1,...,zy] induced by e. Therefore
the R-points of P1(X/(A,84)) are given by the algebraic subset of A*"(R) consisting in the points (7‘50), oD, rﬁl), e ,TS))
fulfilling the polynomial equations

"~ 0Q; (r©

5(1)
Qi(r§0),... 0y = o, . (71 ,...,ro))r§1)—|—QiA (7‘§0),... rOy =0
j=1 """

r'n n r'n

foralli=1,...,s.
5. GENERALIZED PROLONGATION SPACES

In section 4 of [MS10], Moosa and Scanlon define general prolongation spaces in terms of Weil restrictions and
show their existence in important cases. Here we give a direct construction in the case of affine schemes, which
seems to be more direct and is analogous to the constructions of Buium, Rosen and Vojta that we reviewed in
section We obtain the prolongation spaces as the spectra of the A-algebras Qg J(Apa) defined in section

For the convenience of the reader we first recall the necessary definitions leading to the notion of prolongation
spaces in the sense of Moosa and Scanlon.

Notation: We denote by S the standard ring scheme over k, i.e. the k-scheme Spec k[z] regarded as a ring scheme
by equipping for every commutative k-algebra A the set S(A) = A with the given ring structure of A.

Definition 5.1 ([MS10, Definition 3.1] and [MS11], Definition 2.1]). A finite free commutative S-algebra scheme is
an affine commutative S-algebra scheme & that is isomorphic to S' as S-module scheme for some | € N.

Definition 5.2 ([MS10l Definition 3.3]). Given a finite free commutative S-algebra scheme £, a commutative E-ring
(over k) is a commutative k-algebra A together with a homomorphism e: A — E(A) of k-algebras.

Notation: If £ is a finite free S-algebra scheme and e: A — E(A) is a commutative E-ring, then we denote the
ring E(A), considered as A-algebra via the homomorphism e: A — E(A), by E°(A). By E(A) we denote the same
ring, but with the A-algebra structure A = S(A) — E(A) induced from the S-algebra structure on .

Definition 5.3 ([MS10, Definition 4.1]). Let & be a finite free commutative S-algebra scheme over k, e: A — E(A)
be a commutative E-ring and X be an A-scheme. The prolongation space of X with respect to £ and e, denoted
by 7(X, &, e), is the Weil restriction of X x4 E¢(A), where we consider £(A) as A-algebra via e to form the base
extension, from E(A) to A via the standard A-algebra structure on E(A), if it exists.

Remark 5.4. (1) We recall the Weil restriction: Let A be a commutative ring, B be a commutative A-algebra
that is finite and free over A, and let W be a scheme over B such that the morphism Spec B — Spec A is a
homeomorphism or W has the property that every finite set of points is contained in an affine open subset.
Then there exists an A-scheme Rp/a W such that for every A-scheme Z there is a bijection

Schp(Z x4 B,W) = Scha(Z,Rp/a W).

The A-scheme Rp/a W is called the Weil restriction of W' from B to A. For details we refer to [MS10,
Theorem 2.1] or [BLRI0, Section 7.6, Theorem 4].

(2) Let € be a finite free commutative S-algebra scheme over k, let e: A — E(A) be a commutative E-ring, and
X be an A-scheme. There is a canonical bijection

(51) SChA(Z XA E(A),X) = SChg(A)(Z XA S(A), X X4 ES(A)),
where Z x 4 E(A) on the left hand side is an A-scheme via
(5.2) Z x4 E(A) — SpecE(A) = Spec A,

where e: SpecE(A) — Spec A is the morphism induced by the ring homomorphism e: A — E(A).
(8) Therefore, for the prolongation space 7(X,E,e) we have bijections

(53) SChA(Z X A (‘:(A),X) = SChg(A)(Z X A 5(A),X X A 56(14)) = SchA(Z,T(X,E,e)),

where again Z X 4 E(A) on the left hand side is an A-scheme via (5.2)), and the right factor in X x 4 £¢(A)
is an A-algebra via e.
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If £ is a finite free commutative S-algebra scheme over k, then the dual D := E(k)* =  M(E(k), k) of the
commutative k-algebra £(k) is a cocommutative k-coalgebra. There are isomorphisms of k-algebras

(5.4) E(A) 2 E(k) @ A D* @p A M(D, A)

and an E-ring structure e: A — £(A) on a commutative k-algebra A induces a homomorphism ps: A —  M(D, A)
of k-algebras and thus a D-measuring ¥ 4: D ®; A — A from A to itself, cf. section 2l For further details on this
duality we refer to [Heil3b].

Remark 5.5. The homomorphism e: A — E(A) generalizes the homomorphism e: A — A[t]/ (™) in (1.10) and
therefore the A-algebra £¢(A) generalizes the A-algebra A,, in definition .

Proposition 5.6. Let & be a finite free commutative S-algebra scheme. We define D == E(k)* to be the cocommuta-
tive k-coalgebra associated to €. Let e: A — E(A) be a commutative £-ring, pa: A — xR M(D, A) be the composition
of e with and let Y a: D®i A — A be the associated D-measuring. Let f: A — B be a commutative A-algebra
and X = Spec B. Then the A-scheme Spec Qg/(A,wA) is isomorphic to the prolongation space 7(X,E,e) of X with
respect to £ and e, i.e. for every affine A-scheme Z = Spec R there is an isomorphism

(55) SChA(Z, Spec Qg/(Aﬂ/}A)) = SChg(A)(Z XA 5(A),X X A 56(14)) = SChA(Z XA (C,‘(A),X),
where the A-scheme structure on Z x 4 E(A) is given by Z x 4 E(A) — Spec £(A) = Spec A.

Proof. We denote by h: A — R the A-algebra structure of R. The isomorphisms (5.4) induce isomorphisms of
A-algebras

R®4E(A) = R®a M(D,A) = M(D,R),
where in R®4 £(A) and R ®4 xM(D, A) the A-algebra structures on £(A) and xM(D, A) are the canonical ones

to form the tensor product. We consider R ® 4 1M (D, A) and xM(D, R) as A-algebras via the homomorphisms
pa: A= xpM(D, A) and 1 M(D, h) o pa, respectively, and £(A) via e: A — E(A). Therefore we obtain bijectionsﬂ

SChg(A)(Z XA S(A),X XA SE(A)) = SChA(Z X A E(A),X) = A|gA(B, R®a 5(14)) = A|gA(B, k,/\/l(l)7 R)),
where R®4 £(A) and x M(D, R) are considered as A-algebras via e and xM (D, h) o p4, respectively. At the other
side, by proposition we have

SChA(Z, SpeC Qg/(AJPA)) = AlgA(Qg/(A,@bA)’ R) = AlgA(B, k;M(D, R))
O
Example 5.7 (Rings with higher derivation). (1) If € is the S-algebra scheme defined by E(A) = Alt]/(t™+1)

for some m € N and every commutative k-algebra A, then the k-coalgebra D := E(k)* associated to & is the

free k-module D = k(6©), ... 8™ with comultiplication A and counit € given by the homomorphisms of
k-modules defined by

AOD)= Y 000 and  £(07) =60
=11 +1i2
for all i = 0,...,m as in example . Commutative E-rings e: A — E(A) (over k) correspond to
commutative k-algebras A with D-measuring ¥a: D @, A — A, i.e. with Hasse-Schmidt derivation 64 =
(51(:))1‘:0,.4.7171 of length m, cf. example and [Heil3bl Example 8.1].
Let f: A — B be a commutative A-algebra and X = Spec B. Assume that Yo: D @ A — A is a D-
measuring. Then the isomorphism between Spec Qg/(A,wA) and 7(Spec B, €, e) is the defining isomorphism

Pm(X/(A7 6A)) = SpeCHSTg/(A’(;A)
of Rosen’s prolongation space P, (X/(A,04)). The isomorphism (5.5)) specializes to (4.4)).

9n Z x 4 £(A) and R® 4 E(A), the ring £(A) is considered as A-algebra via the S-algebra structure of € to form the base extension,

but the product is made into an A-algebra via A = £(A) — R®4 £(A). The A-algebra structure of £(A) that is used to form the base
extensions X X 4 £¢(A) is given by e: A — £(A).
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(2) If in the situation of the higher derivation (5X))i20,...,m on A is trivial, then 7(Spec B, &, e) is isomorphic
to the scheme of m-jet differentials J,,(B/A) = Spec HSE 4 as defined by Vojta (cf. deﬁnit@'on and the
isomorphism (5.5 specializes to (4.1]).

We illustrate the previous example in the case m = 1:

Example 5.8 (Differential rings). Let € be the finite free commutative S-algebra scheme defined by E(A) = A[t]/(t?)
for every commutative k-algebra A. Let further (A, 55?) be a differential field,

et A= E(A) = A[t]/(#2), ar a+5P(a)t

be the truncated Taylor morphism induced by (51(41) and 64 = (idA,ég)) be the unital higher derivation of length 1

induced by 5(1). Let B be a commutative A-algebra, X = Spec B and Y := Spec A. Ezxample shows that the
prolongation space 7(X,E,e) is isomorphic to the prolongation space Py(X/(A,04)) as defined by Rosen, which is

tsomorphic to the relative tangent bundle T X/(vs ) by remark |4 .

If the derivation 5,4 on A is trivial, then P1(X,(A,54)) coincides with J;(B/A) as defined by Vojta (cf. defini-
tion , which is isomorphic to the tangent bundle T'x/y by Temark.

Now we assume that B = Alxy,...,2,]/(Q1,...,Qs) and let X = Spec(B) be the algebraic subvariety of
A™ = Spec Alz1,...x,] defined by the polynomials Q1,...,Qs € Alxy,...x,) over A. Then the prolongation
space (X, E,€) is given by the subspace of A*™ defined by

" 90 (1) )
Spec(Alx1,. .., Tn, xgl), e w%”]/({Qj, Z %x;l) + Q?A Yli=1,..., s}),
i=1 !

W
where Q?A denotes the polynomials obtained from Q; by applying 51(41) to each coefficient. This space coincides with
the first prolongation space of Rosen, cf. example[].8
If X is defined over the constants of A, i.e. if the coefficients of the polynomials QQ; are constant with respect to

the derivation 61(41), then this specializes to

Spec(Aler, . a2l eP/(1Q5 0 Tall | =1, s,

i=1

which is the tangent bundle of X, cf. subsection [{.]]
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